It can be shown that a solution of the system below is \({{\mathop{\rm x}\nolimits} _1} = 3\), \({{\mathop{\rm x}\nolimits} _2} = 2\), and \({{\mathop{\rm x}\nolimits} _3} = - 1\). Use this fact and the theory from this section to explain why another solution is \({{\mathop{\rm x}\nolimits} _1} = 30\), \({{\mathop{\rm x}\nolimits} _2} = 20\), and \({{\mathop{\rm x}\nolimits} _3} = - 10\). (Observe how the solutions are related, but make no other calculations.)

\(\begin{aligned}{c}{{\mathop{\rm x}\nolimits} _1} - 3{{\mathop{\rm x}\nolimits} _2} - 3{{\mathop{\rm x}\nolimits} _3} = 0\\ - 2{{\mathop{\rm x}\nolimits} _1} + 4{{\mathop{\rm x}\nolimits} _2} + 2{{\mathop{\rm x}\nolimits} _3} = 0\\ - {{\mathop{\rm x}\nolimits} _1} + 5{{\mathop{\rm x}\nolimits} _2} + 7{{\mathop{\rm x}\nolimits} _3} = 0\end{aligned}\)

Short Answer

Expert verified

\({{\mathop{\rm x}\nolimits} _1} = 30,{\rm{ }}{{\mathop{\rm x}\nolimits} _2} = 20,\) and \({{\mathop{\rm x}\nolimits} _3} = - 10\) is a solution to the system of equations.

Step by step solution

01

Nul A is a subspace of \({\mathbb{R}^3}\)

\({\mathop{\rm Nul}\nolimits} A = \left\{ 0 \right\}\)if and only if the equation \(Ax = 0\) has only a trivial solution. \({\mathop{\rm Nul}\nolimits} A\) is a subspaceof \({\mathbb{R}^n}\).

Consider \(A\) is the coefficient matrix of the given houmogeneos system of equations. \(x\) is in \({\mathop{\rm Nul}\nolimits} A\) since the equation \(Ax = 0\) for \(x = \left[ {\begin{array}{*{20}{c}}3\\2\\{ - 1}\end{array}} \right]\). It is closed under scalar multiplication because \({\mathop{\rm Nul}\nolimits} A\) is a subspace of \({\mathbb{R}^3}\).

02

Explain why another solution is \({{\mathop{\rm x}\nolimits} _1} = 30,{\rm{ }}{{\mathop{\rm x}\nolimits} _2} = 20,\) and \({{\mathop{\rm x}\nolimits} _3} =  - 10\)

The scalar multiplication is shown below:

\(\begin{aligned}{c}10{\mathop{\rm x}\nolimits} = 10\left[ {\begin{aligned}{*{20}{c}}3\\2\\{ - 1}\end{aligned}} \right]\\ = \left[ {\begin{aligned}{*{20}{c}}{30}\\{20}\\{ - 10}\end{aligned}} \right]\end{aligned}\)

Therefore, \(\left[ {\begin{aligned}{*{20}{c}}{30}\\{20}\\{ - 10}\end{aligned}} \right]\) is also in \({\mathop{\rm Nul}\nolimits} A\) and \({{\mathop{\rm x}\nolimits} _1} = 30,{{\mathop{\rm x}\nolimits} _2} = 20,{{\mathop{\rm x}\nolimits} _3} = - 10\) is also the solution to the system of equations.Thus, \({{\mathop{\rm x}\nolimits} _1} = 30,{\rm{ }}{{\mathop{\rm x}\nolimits} _2} = 20,{\rm{ }}{{\mathop{\rm x}\nolimits} _3} = - 10\) is a solution to the system of equations

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 33 and 34, Tis a linear transformation from \({\mathbb{R}^2}\) into \({\mathbb{R}^2}\). Show that T is invertible and find a formula for \({T^{ - 1}}\).

33. \(T\left( {{x_1},{x_2}} \right) = \left( { - 5{x_1} + 9{x_2},4{x_1} - 7{x_2}} \right)\)

Consider a dynamical system x(t+1)=Ax(t) with two components. The accompanying sketch shows the initial state vector x0and two eigen vectors υ1andυ2 of A (with eigen values λ1andλ2 respectively). For the given values of λ1andλ2, draw a rough trajectory. Consider the future and the past of the system.

λ1=1,λ2=0.9

In Exercises 9, write a vector equation that is equivalent to

the given system of equations.

9. \({x_2} + 5{x_3} = 0\)

\(\begin{array}{c}4{x_1} + 6{x_2} - {x_3} = 0\\ - {x_1} + 3{x_2} - 8{x_3} = 0\end{array}\)

An important concern in the study of heat transfer is to determine the steady-state temperature distribution of a thin plate when the temperature around the boundary is known. Assume the plate shown in the figure represents a cross section of a metal beam, with negligible heat flow in the direction perpendicular to the plate. Let \({T_1},...,{T_4}\) denote the temperatures at the four interior nodes of the mesh in the figure. The temperature at a node is approximately equal to the average of the four nearest nodes—to the left, above, to the right, and below. For instance,

\({T_1} = \left( {10 + 20 + {T_2} + {T_4}} \right)/4\), or \(4{T_1} - {T_2} - {T_4} = 30\)

33. Write a system of four equations whose solution gives estimates

for the temperatures \({T_1},...,{T_4}\).

Find the general solutions of the systems whose augmented matrices are given in Exercises 10.

10. \(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&{ - 1}&3\\3&{ - 6}&{ - 2}&2\end{array}} \right]\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free