In Exercises 25-28, determine if the specified linear transformation is (a) one-to-one and (b) onto. Justify each answer.

27. The transformation in Exercise 19.

Short Answer

Expert verified

The specified linear transformation is onto.

Step by step solution

01

The transformation in Exercise 19

Write the transformation in Exercise 19.

\(T\left( {{x_1},{x_2},{x_3}} \right) = \left( {{x_1} - 5{x_2} + 4{x_3},{x_2} - 6{x_3}} \right)\)

02

Determine the standard matrix of \(T\) by inspection

Write the transformation \(T\left( x \right)\) and \(x\) into the column vectors of \(A\).

\(\begin{array}{c}T\left( x \right) = \left( {\begin{array}{*{20}{c}}{{x_1} - 5{x_2} + 4{x_3}}\\{{x_2} - 6{x_3}}\end{array}} \right))\\ = \left( A \right))\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right))\\ = \left( {\begin{array}{*{20}{c}}1&{ - 5}&4\\0&1&{ - 6}\end{array}} \right))\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right))\end{array}\))

03

Determine whether the linear transformation is one-to-one or onto

Theorem 12 states that let \(T:{\mathbb{R}^n} \to {\mathbb{R}^m}\) be a linear transformation, and let \(A\) be the standard matrix \(T\) then:

  1. \(T\)maps \({\mathbb{R}^n}\)) onto \({\mathbb{R}^m}\)) if and only if the columns of \(A\) span \({\mathbb{R}^m}\)).
  2. \(T\)is one-to-one if and only if the columns of \(A\) are linearly independent.

Matrix \(A\) has more columns than rows; so the columns of \(A\) are linearly dependent. Thus, \(T\) is not one-to-one, according to theorem 12. Moreover, the column of \(A\) has a pivot in each row; so the rows of \(A\) spans \({\mathbb{R}^2}\). Therefore,\(T\) maps \({\mathbb{R}^3}\), according to theorem 12.

Thus, the specified linear transformation is onto.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 6, write a system of equations that is equivalent to the given vector equation.

6. \({x_1}\left[ {\begin{array}{*{20}{c}}{ - 2}\\3\end{array}} \right] + {x_2}\left[ {\begin{array}{*{20}{c}}8\\5\end{array}} \right] + {x_3}\left[ {\begin{array}{*{20}{c}}1\\{ - 6}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}0\\0\end{array}} \right]\)

In Exercises 11 and 12, determine if \({\rm{b}}\) is a linear combination of \({{\mathop{\rm a}\nolimits} _1},{a_2}\) and \({a_3}\).

12.

Determine the values(s) of \(h\) such that matrix is the augmented matrix of a consistent linear system.

18. \(\left[ {\begin{array}{*{20}{c}}1&{ - 3}&{ - 2}\\5&h&{ - 7}\end{array}} \right]\)

Explain why a set \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3},{{\mathop{\rm v}\nolimits} _4}} \right\}\) in \({\mathbb{R}^5}\) must be linearly independent when \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}} \right\}\) is linearly independent and \({{\mathop{\rm v}\nolimits} _4}\) is not in Span \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}} \right\}\).

A Givens rotation is a linear transformation from \({\mathbb{R}^{\bf{n}}}\) to \({\mathbb{R}^{\bf{n}}}\) used in computer programs to create a zero entry in a vector (usually a column of matrix). The standard matrix of a given rotations in \({\mathbb{R}^{\bf{2}}}\) has the form

\(\left( {\begin{aligned}{*{20}{c}}a&{ - b}\\b&a\end{aligned}} \right)\), \({a^2} + {b^2} = 1\)

Find \(a\) and \(b\) such that \(\left( {\begin{aligned}{*{20}{c}}4\\3\end{aligned}} \right)\) is rotated into \(\left( {\begin{aligned}{*{20}{c}}5\\0\end{aligned}} \right)\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free