Chapter 1: Q27Q (page 1)
In Exercises 25-28, determine if the specified linear transformation is (a) one-to-one and (b) onto. Justify each answer.
27. The transformation in Exercise 19.
Short Answer
The specified linear transformation is onto.
Chapter 1: Q27Q (page 1)
In Exercises 25-28, determine if the specified linear transformation is (a) one-to-one and (b) onto. Justify each answer.
27. The transformation in Exercise 19.
The specified linear transformation is onto.
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 6, write a system of equations that is equivalent to the given vector equation.
6. \({x_1}\left[ {\begin{array}{*{20}{c}}{ - 2}\\3\end{array}} \right] + {x_2}\left[ {\begin{array}{*{20}{c}}8\\5\end{array}} \right] + {x_3}\left[ {\begin{array}{*{20}{c}}1\\{ - 6}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}0\\0\end{array}} \right]\)
In Exercises 11 and 12, determine if \({\rm{b}}\) is a linear combination of \({{\mathop{\rm a}\nolimits} _1},{a_2}\) and \({a_3}\).
12.
Determine the values(s) of \(h\) such that matrix is the augmented matrix of a consistent linear system.
18. \(\left[ {\begin{array}{*{20}{c}}1&{ - 3}&{ - 2}\\5&h&{ - 7}\end{array}} \right]\)
Explain why a set \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3},{{\mathop{\rm v}\nolimits} _4}} \right\}\) in \({\mathbb{R}^5}\) must be linearly independent when \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}} \right\}\) is linearly independent and \({{\mathop{\rm v}\nolimits} _4}\) is not in Span \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}} \right\}\).
A Givens rotation is a linear transformation from \({\mathbb{R}^{\bf{n}}}\) to \({\mathbb{R}^{\bf{n}}}\) used in computer programs to create a zero entry in a vector (usually a column of matrix). The standard matrix of a given rotations in \({\mathbb{R}^{\bf{2}}}\) has the form
\(\left( {\begin{aligned}{*{20}{c}}a&{ - b}\\b&a\end{aligned}} \right)\), \({a^2} + {b^2} = 1\)
Find \(a\) and \(b\) such that \(\left( {\begin{aligned}{*{20}{c}}4\\3\end{aligned}} \right)\) is rotated into \(\left( {\begin{aligned}{*{20}{c}}5\\0\end{aligned}} \right)\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.