Simplify vector \({\bf{b}} = \left[ {\begin{array}{*{20}{c}}0\\0\\{{b_3}}\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}0\\{{b_2}}\\0\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}{{b_1}}\\0\\0\end{array}} \right]\) further.
\(\begin{array}{c}{\bf{b}} = \left[ {\begin{array}{*{20}{c}}0\\0\\{\frac{{5{b_3}}}{5}}\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}0\\{\frac{{4{b_2}}}{4}}\\0\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}{\frac{{3{b_1}}}{3}}\\0\\0\end{array}} \right]\\ = \frac{{{b_3}}}{5}\left[ {\begin{array}{*{20}{c}}0\\0\\5\end{array}} \right] + \frac{{{b_2}}}{4}\left[ {\begin{array}{*{20}{c}}0\\4\\0\end{array}} \right] + \frac{{{b_1}}}{3}\left[ {\begin{array}{*{20}{c}}3\\0\\0\end{array}} \right]\end{array}\)
Thus, it shows that the columns of the assumed matrix span are \({\mathbb{R}^3}\).
Therefore, the required matrix is \(A = \left[ {\begin{array}{*{20}{c}}0&0&3\\0&4&0\\5&0&0\end{array}} \right]\).