Question: In Exercises 29 and 30, describe the possible echelon forms of the standard matrix for a linear transformation \(T\). Use the notation of Example 1 in section 1.2.

29. \(T:{\mathbb{R}^3} \to {\mathbb{R}^4}\) is one-to-one.

Short Answer

Expert verified

The possible echelon form of the standard matrix is

\(\left[ {\begin{array}{*{20}{c}} \square & * & * \\ 0&\square & * \\ 0&0&\square \\ 0&0&0 \end{array}} \right]\) .

Step by step solution

01

The notation of example 1 for matrices in echelon form

In example 1, the following matrices are in echelon form. The leading entries \(\left( \square \right)\) may have any nonzero value; the starred entries \(\left( * \right)\) may have any value (including zero).

\(\left[ {\begin{array}{*{20}{c}} \square & * & * & * \\ 0&\square & * & * \\ 0&0&0&0 \\ 0&0&0&0 \end{array}} \right],\left[ {\begin{array}{*{20}{c}} 0&\square & * & * & * & * & * & * & * & * \\ 0&0&0&\square & * & * & * & * & * & * \\ 0&0&0&0&\square & * & * & * & * & * \\ 0&0&0&0&0&\square & * & * & * & * \\ 0&0&0&0&0&0&0&0&\square & * \end{array}} \right]\)

02

Determine the possible echelon form of the standard matrix

Theorem 12states that let \(T:{\mathbb{R}^n} \to {\mathbb{R}^m}\) be a linear transformation, and let \(A\) be the standard matrix \(T\) then:

  1. \(T\)maps \({\mathbb{R}^n}\) onto \({\mathbb{R}^m}\) if and only if the columns of \(A\) span\({\mathbb{R}^m}\).
  2. \(T\)is one-to-one if and only if the columns of \(A\) are linearly independent.

The columns of \(A\) must be linearly independent, and so the equation \(Ax = 0\) contains no free variable according to theorem 12. Therefore, \(A\) must have a pivot column in each column.

Use leading entries \(\left( \square \right)\) and starred entries \(\left( * \right)\) to write the possible echelon form of the matrix.

\(\left[ {\begin{array}{*{20}{c}} \square & * & * \\ 0&\square & * \\ 0&0&\square \\ 0&0&0 \end{array}} \right]\) .

The shape of \(A\) prevents \(T\) from being one-to-one.

Thus, the possible echelon form of the standard matrix is \(\left[ {\begin{array}{*{20}{c}} \square & * & * \\ 0&\square & * \\ 0&0&\square \\ 0&0&0 \end{array}} \right]\) . .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose Tand Ssatisfy the invertibility equations (1) and (2), where T is a linear transformation. Show directly that Sis a linear transformation. (Hint: Given u, v in \({\mathbb{R}^n}\), let \({\mathop{\rm x}\nolimits} = S\left( {\mathop{\rm u}\nolimits} \right),{\mathop{\rm y}\nolimits} = S\left( {\mathop{\rm v}\nolimits} \right)\). Then \(T\left( {\mathop{\rm x}\nolimits} \right) = {\mathop{\rm u}\nolimits} \), \(T\left( {\mathop{\rm y}\nolimits} \right) = {\mathop{\rm v}\nolimits} \). Why? Apply Sto both sides of the equation \(T\left( {\mathop{\rm x}\nolimits} \right) + T\left( {\mathop{\rm y}\nolimits} \right) = T\left( {{\mathop{\rm x}\nolimits} + y} \right)\). Also, consider \(T\left( {cx} \right) = cT\left( x \right)\).)

Let T be a linear transformation that maps \({\mathbb{R}^n}\) onto \({\mathbb{R}^n}\). Is \({T^{ - 1}}\) also one-to-one?

Find the general solutions of the systems whose augmented matrices are given

11. \(\left[ {\begin{array}{*{20}{c}}3&{ - 4}&2&0\\{ - 9}&{12}&{ - 6}&0\\{ - 6}&8&{ - 4}&0\end{array}} \right]\).

Explain why a set \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3},{{\mathop{\rm v}\nolimits} _4}} \right\}\) in \({\mathbb{R}^5}\) must be linearly independent when \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}} \right\}\) is linearly independent and \({{\mathop{\rm v}\nolimits} _4}\) is not in Span \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}} \right\}\).

Find the elementary row operation that transforms the first matrix into the second, and then find the reverse row operation that transforms the second matrix into the first.

30.\(\left[ {\begin{array}{*{20}{c}}1&3&{ - 4}\\0&{ - 2}&6\\0&{ - 5}&9\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}1&3&{ - 4}\\0&1&{ - 3}\\0&{ - 5}&9\end{array}} \right]\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free