In Exercise 1-10, assume that\(T\)is a linear transformation. Find the standard matrix of\(T\).

\(T:{\mathbb{R}^3} \to {\mathbb{R}^2}\), \(T\left( {{e_1}} \right) = \left( {1,3} \right)\) and \(T\left( {{e_2}} \right) = \left( {4, - 7} \right) - \) and \(T\left( {{e_3}} \right) = \left( { - 5,4} \right)\)where \({e_1}\), \({e_2}\), and \({e_3}\).

Short Answer

Expert verified

\(\left[ {\begin{array}{*{20}{c}}1&4&{ - 5}\\3&{ - 7}&4\end{array}} \right]\)

Step by step solution

01

Find the value of \(T\) using linear transformation

Using linear transformation,

\(\begin{aligned}{c}T &= T\left( {{x_1}{e_1} + {x_2}{e_2} + {x_3}{e_3}} \right)\\ &= {x_1}T\left( {{e_1}} \right) + {x_2}T\left( {{e_2}} \right) + {x_3}T\left( {{e_3}} \right)\\ &= \left[ {\begin{array}{*{20}{c}}{T\left( {{e_1}} \right)}&{T\left( {{e_2}} \right)}&{T\left( {{e_3}} \right)}\end{array}} \right]x\end{aligned}\)

02

Substitute values of \(T\left( {{e_1}} \right)\), \(T\left( {{e_2}} \right)\), and \(T\left( {{e_3}} \right)\)

By the equation \(T = \left[ {\begin{array}{*{20}{c}}{T\left( {{e_1}} \right)}&{T\left( {{e_2}} \right)}&{T\left( {{e_3}} \right)}\end{array}} \right]x\),

\(T = \left[ {\begin{array}{*{20}{c}}1&4&{ - 5}\\3&{ - 7}&4\end{array}} \right]x\).

03

Find the standard matrix \(T\) for linear transformation

In the equation \(T = Ax\), the matrix \(A\) is the matrix for linear transformation \(T\).

By the equation \(T = \left[ {\begin{array}{*{20}{c}}1&4&{ - 5}\\3&{ - 7}&4\end{array}} \right]x\), \(A = \left[ {\begin{array}{*{20}{c}}1&4&{ - 5}\\3&{ - 7}&4\end{array}} \right]\).

So, the linear transformation matrix is \(\left[ {\begin{array}{*{20}{c}}1&4&{ - 5}\\3&{ - 7}&4\end{array}} \right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 9, write a vector equation that is equivalent to

the given system of equations.

9. \({x_2} + 5{x_3} = 0\)

\(\begin{array}{c}4{x_1} + 6{x_2} - {x_3} = 0\\ - {x_1} + 3{x_2} - 8{x_3} = 0\end{array}\)

Suppose Tand Ssatisfy the invertibility equations (1) and (2), where T is a linear transformation. Show directly that Sis a linear transformation. (Hint: Given u, v in \({\mathbb{R}^n}\), let \({\mathop{\rm x}\nolimits} = S\left( {\mathop{\rm u}\nolimits} \right),{\mathop{\rm y}\nolimits} = S\left( {\mathop{\rm v}\nolimits} \right)\). Then \(T\left( {\mathop{\rm x}\nolimits} \right) = {\mathop{\rm u}\nolimits} \), \(T\left( {\mathop{\rm y}\nolimits} \right) = {\mathop{\rm v}\nolimits} \). Why? Apply Sto both sides of the equation \(T\left( {\mathop{\rm x}\nolimits} \right) + T\left( {\mathop{\rm y}\nolimits} \right) = T\left( {{\mathop{\rm x}\nolimits} + y} \right)\). Also, consider \(T\left( {cx} \right) = cT\left( x \right)\).)

Question: If A is a non-zero matrix of the form,[a-bba] then the rank of A must be 2.

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be an invertible linear transformation, and let Sand U be functions from \({\mathbb{R}^n}\) into \({\mathbb{R}^n}\) such that \(S\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) and \(\)\(U\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\). Show that \(U\left( v \right) = S\left( v \right)\) for all v in \({\mathbb{R}^n}\). This will show that Thas a unique inverse, as asserted in theorem 9. (Hint: Given any v in \({\mathbb{R}^n}\), we can write \({\mathop{\rm v}\nolimits} = T\left( {\mathop{\rm x}\nolimits} \right)\) for some x. Why? Compute \(S\left( {\mathop{\rm v}\nolimits} \right)\) and \(U\left( {\mathop{\rm v}\nolimits} \right)\)).

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^m}\) be a linear transformation, and suppose \(T\left( u \right) = {\mathop{\rm v}\nolimits} \). Show that \(T\left( { - u} \right) = - {\mathop{\rm v}\nolimits} \).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free