Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be an invertible linear transformation. Explain why T is both one-to-one and onto \({\mathbb{R}^n}\). Use equations (1) and (2). Then give a second explanation using one or more theorems.

Short Answer

Expert verified

It is proved that Tis both one-to-one and onto.

Step by step solution

01

Show that T is one-to-one

The linear transformation S,given by \(S\left( x \right) = {A^{ - 1}}{\mathop{\rm x}\nolimits} \), is a unique function satisfying the equations

  1. \(S\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \)for all x in \({\mathbb{R}^n}\), and
  2. \(T\left( {S\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \)for all x in \({\mathbb{R}^n}\).

Let \(T\left( {\mathop{\rm u}\nolimits} \right) = T\left( {\mathop{\rm v}\nolimits} \right)\) for vectors u and v in \({\mathbb{R}^n}\). Then, \(S\left( {T\left( {\mathop{\rm u}\nolimits} \right)} \right) = S\left( {T\left( {\mathop{\rm v}\nolimits} \right)} \right)\), where Srepresents the inverse of T.

By equation (1), \({\mathop{\rm u}\nolimits} = S\left( {T\left( {\mathop{\rm u}\nolimits} \right)} \right)\) and \(S\left( {T\left( {\mathop{\rm v}\nolimits} \right)} \right) = {\mathop{\rm v}\nolimits} \). Thus, \({\mathop{\rm u}\nolimits} = v\) and T is one-to-one.

02

Show that T is onto

Let \(y\) be an arbitrary vector in \({\mathbb{R}^n}\) and \({\mathop{\rm x}\nolimits} = S\left( y \right)\). Equation (2) shows that \(T\left( {\mathop{\rm x}\nolimits} \right) = T\left( {S\left( {\mathop{\rm y}\nolimits} \right)} \right) = {\mathop{\rm y}\nolimits} \), which indicates that Tmaps \({\mathbb{R}^n}\) onto \({\mathbb{R}^n}\).

Thus, it is proved that Tmaps \({\mathbb{R}^n}\) onto \({\mathbb{R}^n}\).

03

Show that T is both one-to-one and onto

Let\(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be a linear transformation and Abe the standard matrix for T. Then, according totheorem 9, Tis invertibleif and only if Ais an invertible matrix. The linear transformation S,given by \(S\left( x \right) = {A^{ - 1}}{\mathop{\rm x}\nolimits} \), is a unique function satisfying the equations

  1. \(S\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \)for all x in \({\mathbb{R}^n}\), and
  2. \(T\left( {S\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \)for all x in \({\mathbb{R}^n}\).

Let\(T:{\mathbb{R}^n} \to {\mathbb{R}^m}\) be a linear transformation and Abe the standard matrix for T. Then, according to theorem 12,

  1. Tmaps \({\mathbb{R}^n}\) onto \({\mathbb{R}^m}\) if and only if the columns of Aspan \({\mathbb{R}^m}\);
  2. T is one-to-one if and only if the columns of Aare linearly independent.

The standard matrix Afor T is invertible, according to theorem 9.

Following the invertible matrix theorem, the columns of Aare linearly independent, and they span \({\mathbb{R}^n}\). Therefore, T is one-to-one and it maps \({\mathbb{R}^n}\) onto \({\mathbb{R}^n}\), based on theorem 12.

Thus, it is proved that Tis both one-to-one and onto.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercise 23 and 24, make each statement True or False. Justify each answer.

23.

a. Another notation for the vector \(\left[ {\begin{array}{*{20}{c}}{ - 4}\\3\end{array}} \right]\) is \(\left[ {\begin{array}{*{20}{c}}{ - 4}&3\end{array}} \right]\).

b. The points in the plane corresponding to \(\left[ {\begin{array}{*{20}{c}}{ - 2}\\5\end{array}} \right]\) and \(\left[ {\begin{array}{*{20}{c}}{ - 5}\\2\end{array}} \right]\) lie on a line through the origin.

c. An example of a linear combination of vectors \({{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _2}\) is the vector \(\frac{1}{2}{{\mathop{\rm v}\nolimits} _1}\).

d. The solution set of the linear system whose augmented matrix is \(\left[ {\begin{array}{*{20}{c}}{{a_1}}&{{a_2}}&{{a_3}}&b\end{array}} \right]\) is the same as the solution set of the equation\({{\mathop{\rm x}\nolimits} _1}{a_1} + {x_2}{a_2} + {x_3}{a_3} = b\).

e. The set Span \(\left\{ {u,v} \right\}\) is always visualized as a plane through the origin.

Determine the value(s) of \(a\) such that \(\left\{ {\left( {\begin{aligned}{*{20}{c}}1\\a\end{aligned}} \right),\left( {\begin{aligned}{*{20}{c}}a\\{a + 2}\end{aligned}} \right)} \right\}\) is linearly independent.

In Exercises 11 and 12, determine if \({\rm{b}}\) is a linear combination of \({{\mathop{\rm a}\nolimits} _1},{a_2}\) and \({a_3}\).

11.\({a_1} = \left[ {\begin{array}{*{20}{c}}1\\{ - 2}\\0\end{array}} \right],{a_2} = \left[ {\begin{array}{*{20}{c}}0\\1\\2\end{array}} \right],{a_3} = \left[ {\begin{array}{*{20}{c}}5\\{ - 6}\\8\end{array}} \right],{\mathop{\rm b}\nolimits} = \left[ {\begin{array}{*{20}{c}}2\\{ - 1}\\6\end{array}} \right]\)

Solve the systems in Exercises 11‑14.

12.\(\begin{aligned}{c}{x_1} - 3{x_2} + 4{x_3} = - 4\\3{x_1} - 7{x_2} + 7{x_3} = - 8\\ - 4{x_1} + 6{x_2} - {x_3} = 7\end{aligned}\)

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be an invertible linear transformation, and let Sand U be functions from \({\mathbb{R}^n}\) into \({\mathbb{R}^n}\) such that \(S\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) and \(\)\(U\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\). Show that \(U\left( v \right) = S\left( v \right)\) for all v in \({\mathbb{R}^n}\). This will show that Thas a unique inverse, as asserted in theorem 9. (Hint: Given any v in \({\mathbb{R}^n}\), we can write \({\mathop{\rm v}\nolimits} = T\left( {\mathop{\rm x}\nolimits} \right)\) for some x. Why? Compute \(S\left( {\mathop{\rm v}\nolimits} \right)\) and \(U\left( {\mathop{\rm v}\nolimits} \right)\)).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free