In Exercises 32–36, column vectors are written as rows, such as \({\bf{x}} = \left( {{x_1},{x_2}} \right)\), and \(T\left( {\bf{x}} \right)\) is written as \(T\left( {{x_1},{x_2}} \right)\).

36.Let \(T:{\mathbb{R}^3} \to {\mathbb{R}^3}\) be the transformation that projects each vector \({\bf{x}} = \left( {{x_1},{x_2},{x_3}} \right)\) onto the plane \({x_2} = 0\), so \(T\left( {\bf{x}} \right) = T\left( {{x_1},0,{x_3}} \right)\). Show that T is a linear transformation.

Short Answer

Expert verified

\(T\) is a linear transformation.

Step by step solution

01

Write the condition for the transformation to be linear

The transformation \(T\) is said to be linear if all vectors \({\bf{u}}\) in \({\mathbb{R}^n}\) and all scalars \(c\) and \(d\) are represented in the domain \(T\)as shown below:

  • \(T\left( {c{\bf{u}}} \right) = cT\left( {\bf{u}} \right)\)
  • \(T\left( {c{\bf{u}} + d{\bf{v}}} \right) = cT\left( {\bf{u}} \right) + dT\left( {\bf{v}} \right)\)
02

Obtain the linear combination of vectors \(c{\bf{u}} + d{\bf{v}}\)

Let\({\bf{u}} = \left( {{u_1},{u_2},{u_3}} \right)\), and\({\bf{v}} = \left( {{v_1},{v_2},{v_3}} \right)\).

Substitute\({\bf{u}} = \left( {{u_1},{u_2},{u_3}} \right)\), and\({\bf{v}} = \left( {{v_1},{v_2},{v_3}} \right)\)in\(c{\bf{u}} + d{\bf{v}}\) as shown below:

\(\begin{aligned}{c}c{\bf{u}} + d{\bf{v}} &= c\left( {{u_1},{u_2},{u_3}} \right) + d\left( {{v_1},{v_2},{v_3}} \right)\\ &= \left( {c{u_1},c{u_2},c{u_3}} \right) + \left( {d{v_1},d{v_2},d{v_3}} \right)\\ &= \left( {c{u_1} + d{v_1},c{u_2} + d{v_2},c{u_3} + d{v_3}} \right)\end{aligned}\)

03

Obtain the transformation \(T\left( {c{\bf{u}} + d{\bf{v}}} \right)\)

As the vector is \(c{\bf{u}} + d{\bf{v}} = \left( {c{u_1} + d{v_1},c{u_2} + d{v_2},c{u_3} + d{v_3}} \right)\); apply the transformation by using the concept that for\({\bf{x}} = \left( {{x_1},{x_2},{x_3}} \right)\), the transformation is\(T\left( {\bf{x}} \right) = T\left( {{x_1},0,{x_3}} \right)\).

\(\begin{aligned}{c}T\left( {c{\bf{u}} + d{\bf{v}}} \right) &= T\left( {c{u_1} + d{v_1},c{u_2} + d{v_2},c{u_3} + d{v_3}} \right)\\ &= \left( {c{u_1} + d{v_1},0,c{u_3} + d{v_3}} \right)\\ &= \left( {c{u_1} + d{v_1},0,c{u_3} + d{v_3}} \right)\\ &= \left( {c{u_1},0,c{u_3}} \right) + \left( {d{v_1},0,d{v_3}} \right)\end{aligned}\)

Simplify further.

\(\begin{aligned}{c}T\left( {c{\bf{u}} + d{\bf{v}}} \right) &= c\left( {{u_1},0,{u_3}} \right) + d\left( {{v_1},0,{v_3}} \right)\\ &= cT\left( {\bf{u}} \right) + dT\left( {\bf{v}} \right)\end{aligned}\)

Since \(T\left( {c{\bf{u}} + d{\bf{v}}} \right) = cT\left( {\bf{u}} \right) + dT\left( {\bf{v}} \right)\), \(T\) is a linear transformation.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose the coefficient matrix of a linear system of three equations in three variables has a pivot position in each column. Explain why the system has a unique solution.

Explain why a set \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3},{{\mathop{\rm v}\nolimits} _4}} \right\}\) in \({\mathbb{R}^5}\) must be linearly independent when \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}} \right\}\) is linearly independent and \({{\mathop{\rm v}\nolimits} _4}\) is not in Span \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}} \right\}\).

In Exercise 23 and 24, make each statement True or False. Justify each answer.

24.

a. Any list of five real numbers is a vector in \({\mathbb{R}^5}\).

b. The vector \({\mathop{\rm u}\nolimits} \) results when a vector \({\mathop{\rm u}\nolimits} - v\) is added to the vector \({\mathop{\rm v}\nolimits} \).

c. The weights \({{\mathop{\rm c}\nolimits} _1},...,{c_p}\) in a linear combination \({c_1}{v_1} + \cdot \cdot \cdot + {c_p}{v_p}\) cannot all be zero.

d. When are \({\mathop{\rm u}\nolimits} \) nonzero vectors, Span \(\left\{ {u,v} \right\}\) contains the line through \({\mathop{\rm u}\nolimits} \) and the origin.

e. Asking whether the linear system corresponding to an augmented matrix \(\left[ {\begin{array}{*{20}{c}}{{{\rm{a}}_{\rm{1}}}}&{{{\rm{a}}_{\rm{2}}}}&{{{\rm{a}}_{\rm{3}}}}&{\rm{b}}\end{array}} \right]\) has a solution amounts to asking whether \({\mathop{\rm b}\nolimits} \) is in Span\(\left\{ {{a_1},{a_2},{a_3}} \right\}\).

Suppose \(a,b,c,\) and \(d\) are constants such that \(a\) is not zero and the system below is consistent for all possible values of \(f\) and \(g\). What can you say about the numbers \(a,b,c,\) and \(d\)? Justify your answer.

28. \(\begin{array}{l}a{x_1} + b{x_2} = f\\c{x_1} + d{x_2} = g\end{array}\)

In Exercises 11 and 12, determine if \({\rm{b}}\) is a linear combination of \({{\mathop{\rm a}\nolimits} _1},{a_2}\) and \({a_3}\).

12.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free