Let \(H = Span\left\{ {{u_{\bf{1}}},{u_{\bf{2}}},{u_{\bf{3}}}} \right\}\) and \(K = Span\left\{ {{v_{\bf{1}}},{v_{\bf{2}}},{v_{\bf{3}}}} \right\}\), where

\({u_1} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{2}}\\{\bf{0}}\\{ - {\bf{1}}}\end{array}} \right)\),\({u_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{2}}\\{ - {\bf{1}}}\\{\bf{1}}\end{array}} \right)\),\({u_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{4}}\\{\bf{1}}\\{ - {\bf{4}}}\end{array}} \right)\),

\({v_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{2}}}\\{ - {\bf{2}}}\\{ - {\bf{1}}}\\{\bf{3}}\end{array}} \right)\),\({v_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{3}}\\{\bf{2}}\\{ - {\bf{6}}}\end{array}} \right)\),\({v_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{\bf{4}}\\{\bf{6}}\\{ - {\bf{2}}}\end{array}} \right)\)

Find bases for H, K, and \(H + K\).

Short Answer

Expert verified

The set \(\left\{ {u{ & _1},{u_2}} \right\}\) is a basis for H, \(\left\{ {{v_1},{v_2},{v_3}} \right\}\) is a basis for K, and \(\left\{ {{u_1},{u_2},{v_2},{v_3}} \right\}\) is a basis for \(H + K\).

Step by step solution

01

Use the spanning set theorem

By the spanning set theorem, the subset of \(\left\{ {{u_1},{u_2},{u_3}} \right\}\) forms a basis for H. Similarly, the subset of \(\left\{ {{v_1},{v_2},{v_3}} \right\}\) forms a basis for K.

02

Compute the basis for H

Use the row-reduced echelon form to identify the pivot columns.

\(\left( {\begin{array}{*{20}{c}}{{u_1}}&{{u_2}}&{{u_3}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&0&3\\2&2&4\\0&{ - 1}&1\\{ - 1}&1&{ - 4}\end{array}} \right)\)

Add \( - 2\) times row 1 to row 2, and add row 1 to row 4.

\( \sim \left( {\begin{array}{*{20}{c}}1&0&3\\0&2&{ - 2}\\0&{ - 1}&1\\0&1&{ - 1}\end{array}} \right)\)

Divide row 2 by 2, and add row 3 to row 4.

\( \sim \left( {\begin{array}{*{20}{c}}1&0&3\\0&1&{ - 1}\\0&{ - 1}&1\\0&0&0\end{array}} \right)\)

Now, add rows 2 and 3.

\( \sim \left( {\begin{array}{*{20}{c}}1&0&3\\0&1&{ - 1}\\0&0&0\\0&0&0\end{array}} \right)\)

Thus \(\left\{ {u{ & _1},{u_2}} \right\}\) is a basis for H.

03

Compute the basis for K

Use the row-reduced echelon form to identify the pivot columns.

\(\left( {\begin{array}{*{20}{c}}{{v_1}}&{{v_2}}&{{v_3}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{ - 2}&2&{ - 1}\\{ - 2}&3&4\\{ - 1}&2&6\\3&{ - 6}&{ - 2}\end{array}} \right)\)

Divide row 1 by \( - 2\).

\( \sim \left( {\begin{array}{*{20}{c}}1&{ - 1}&{0.5}\\{ - 2}&3&4\\{ - 1}&2&6\\3&{ - 6}&{ - 2}\end{array}} \right)\)

Add 2 times row 1 to row . Then add 1 time row 1 to row 3.

Again add \( - 3\) times row 1 to row 4.

\( \sim \left( {\begin{array}{*{20}{c}}1&{ - 1}&{0.5}\\0&1&5\\0&1&{6.5}\\0&{ - 3}&{ - 3.5}\end{array}} \right)\)

Add \( - 1\) time row 2 to row 3, and add 3 times row 2 to row 3 .

\( \sim \left( {\begin{array}{*{20}{c}}1&{ - 1}&{0.5}\\0&1&5\\0&0&{1.5}\\0&0&{ - 11.5}\end{array}} \right)\)

Finally, add row 2 to row 1.

\( \sim \left( {\begin{array}{*{20}{c}}1&0&{5.5}\\0&1&5\\0&0&{1.5}\\0&0&{ - 11.5}\end{array}} \right)\)

Divide row 3 by \(1.5\).

\( \sim \left( {\begin{array}{*{20}{c}}1&0&{5.5}\\0&1&5\\0&0&1\\0&0&{ - 11.5}\end{array}} \right)\)

Add \( - 5.5\) times row 3 to row 1. Then add \( - 5\) times row 3 to row 2. Again add \(11.5\) times row 3 to row 4.

\( \sim \left( {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\\0&0&0\end{array}} \right)\)

Thus, \(\left\{ {{v_1},{v_2},{v_3}} \right\}\) is a basis for K.

04

Compute the basis for \(H + K\)

Note that \(H + K = {\rm{Span}}\left\{ {{u_1},{u_2},{u_3},{v_1},{v_2},{v_3}} \right\}\).

Use the row-reduced echelon form to identify the pivot columns.

\(\left( {\begin{array}{*{20}{c}}{{u_1}}&{{u_2}}&{{u_3}}&{{v_1}}&{{v_2}}&{{v_3}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&0&3&{ - 2}&2&{ - 1}\\2&2&4&{ - 2}&3&4\\0&{ - 1}&1&{ - 1}&2&6\\{ - 1}&1&{ - 4}&3&{ - 6}&{ - 2}\end{array}} \right)\)

Add \( - 2\) times row 1 to row 2, and add 1 time row 1 to row 4.

\( \sim \left( {\begin{array}{*{20}{c}}1&0&3&{ - 2}&2&{ - 1}\\0&2&{ - 2}&2&{ - 1}&6\\0&{ - 1}&1&{ - 1}&2&6\\0&1&{ - 1}&1&{ - 4}&{ - 3}\end{array}} \right)\)

Divide row 2 by 2.

\( \sim \left( {\begin{array}{*{20}{c}}1&0&3&{ - 2}&2&{ - 1}\\0&1&{ - 1}&1&{ - 0.5}&3\\0&{ - 1}&1&{ - 1}&2&6\\0&1&{ - 1}&1&{ - 4}&{ - 3}\end{array}} \right)\)

Add 1 time row 2 to row 3, and \( - 1\) time row 2 to row 4.

\( \sim \left( {\begin{array}{*{20}{c}}1&0&3&{ - 2}&2&{ - 1}\\0&1&{ - 1}&1&{ - 0.5}&3\\0&0&0&0&{1.5}&9\\0&0&0&0&{ - 3.5}&{ - 6}\end{array}} \right)\)

Divide row 3 by \(1.5\).

\( \sim \left( {\begin{array}{*{20}{c}}1&0&3&{ - 2}&2&{ - 1}\\0&1&{ - 1}&1&{ - 0.5}&3\\0&0&0&0&1&6\\0&0&0&0&{ - 3.5}&{ - 6}\end{array}} \right)\)

Add \(3.5\) times row 3 to row 4. Then add \(0.5\) time row 3 to row 2. Again add \( - 2\) times row 3 to row 1.

\( \sim \left( {\begin{array}{*{20}{c}}1&0&3&{ - 2}&0&{ - 13}\\0&1&{ - 1}&1&0&6\\0&0&0&0&1&6\\0&0&0&0&0&{15}\end{array}} \right)\)

Divide row 4 by 15.

\( \sim \left( {\begin{array}{*{20}{c}}1&0&3&{ - 2}&0&{ - 13}\\0&1&{ - 1}&1&0&6\\0&0&0&0&1&6\\0&0&0&0&0&1\end{array}} \right)\)

Add \( - 6\) times row 4 to row 3. Then add \( - 6\) times row 4 to row 2. Again add 13 times row 4 to row 1.

\( \sim \left( {\begin{array}{*{20}{c}}1&0&3&{ - 2}&0&0\\0&1&{ - 1}&1&0&0\\0&0&0&0&1&0\\0&0&0&0&0&1\end{array}} \right)\)

Thus, \(\left\{ {{u_1},{u_2},{v_2},{v_3}} \right\}\) is a basis for \(H + K\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Determine whether the statements that follow are true or false, and justify your answer.

15: The systemAx=[0001]isinconsistent for all 4×3 matrices A.

Let \(T:{\mathbb{R}^3} \to {\mathbb{R}^3}\) be the linear transformation that reflects each vector through the plane \({x_{\bf{2}}} = 0\). That is, \(T\left( {{x_1},{x_2},{x_3}} \right) = \left( {{x_1}, - {x_2},{x_3}} \right)\). Find the standard matrix of \(T\).

Find the general solutions of the systems whose augmented matrices are given

11. \(\left[ {\begin{array}{*{20}{c}}3&{ - 4}&2&0\\{ - 9}&{12}&{ - 6}&0\\{ - 6}&8&{ - 4}&0\end{array}} \right]\).

Use the accompanying figure to write each vector listed in Exercises 7 and 8 as a linear combination of u and v. Is every vector in \({\mathbb{R}^2}\) a linear combination of u and v?

7.Vectors a, b, c, and d

In Exercise 23 and 24, make each statement True or False. Justify each answer.

23.

a. Another notation for the vector \(\left[ {\begin{array}{*{20}{c}}{ - 4}\\3\end{array}} \right]\) is \(\left[ {\begin{array}{*{20}{c}}{ - 4}&3\end{array}} \right]\).

b. The points in the plane corresponding to \(\left[ {\begin{array}{*{20}{c}}{ - 2}\\5\end{array}} \right]\) and \(\left[ {\begin{array}{*{20}{c}}{ - 5}\\2\end{array}} \right]\) lie on a line through the origin.

c. An example of a linear combination of vectors \({{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _2}\) is the vector \(\frac{1}{2}{{\mathop{\rm v}\nolimits} _1}\).

d. The solution set of the linear system whose augmented matrix is \(\left[ {\begin{array}{*{20}{c}}{{a_1}}&{{a_2}}&{{a_3}}&b\end{array}} \right]\) is the same as the solution set of the equation\({{\mathop{\rm x}\nolimits} _1}{a_1} + {x_2}{a_2} + {x_3}{a_3} = b\).

e. The set Span \(\left\{ {u,v} \right\}\) is always visualized as a plane through the origin.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free