Determine if the columns of the matrix span \({R^4}\).

\(\left[ {\begin{array}{*{20}{c}}{12}&{ - 7}&{11}&{ - 9}&5\\{ - 9}&4&{ - 8}&7&{ - 3}\\{ - 6}&{11}&{ - 7}&3&{ - 9}\\4&{ - 6}&{10}&{ - 5}&{12}\end{array}} \right]\)

Short Answer

Expert verified

The columns of the matrix are in span \({R^4}\) .

Step by step solution

01

Solve matrix

Apply the Gaussian elimination method to solve the given matrix to find the pivot.

Apply row operation \({R_2} \to {R_2} + \frac{3}{4}{R_1}\).

\(\left[ {\begin{array}{*{20}{c}}{12}&{ - 7}&{11}&{ - 9}&5\\0&{ - \frac{5}{4}}&{\frac{1}{4}}&{\frac{1}{4}}&{\frac{3}{4}}\\{ - 6}&{11}&{ - 7}&3&{ - 9}\\4&{ - 6}&{10}&{ - 5}&{12}\end{array}} \right]\)

Now, apply row operation \({R_3} \to {R_3} + \frac{1}{2}{R_1}\) again in the above matrix.

\(\left[ {\begin{array}{*{20}{c}}{12}&{ - 7}&{11}&{ - 9}&5\\0&{ - \frac{5}{4}}&{\frac{1}{4}}&{\frac{1}{4}}&{\frac{3}{4}}\\0&{\frac{{15}}{2}}&{ - \frac{3}{2}}&{ - \frac{3}{2}}&{ - \frac{{13}}{2}}\\4&{ - 6}&{10}&{ - 5}&{12}\end{array}} \right]\)

02

Row operation in the matrix

Apply row operation \({R_4} \to {R_4} - \frac{1}{3}{R_1}\) in the above matrix.

\(\left[ {\begin{array}{*{20}{c}}{12}&{ - 7}&{11}&{ - 9}&5\\0&{ - \frac{5}{4}}&{\frac{1}{4}}&{\frac{1}{4}}&{\frac{3}{4}}\\0&{\frac{{15}}{2}}&{ - \frac{3}{2}}&{ - \frac{3}{2}}&{ - \frac{{13}}{2}}\\0&{ - \frac{{11}}{3}}&{\frac{{19}}{3}}&{ - 2}&{\frac{{31}}{3}}\end{array}} \right]\)

Apply row operation \({R_3} \to {R_3} + 6{R_2}\) in the above matrix.

\(\left[ {\begin{array}{*{20}{c}}{12}&{ - 7}&{11}&{ - 9}&5\\0&{ - \frac{5}{4}}&{\frac{1}{4}}&{\frac{1}{4}}&{\frac{3}{4}}\\0&0&0&0&{ - 2}\\0&{ - \frac{{11}}{3}}&{\frac{{19}}{3}}&{ - 2}&{\frac{{31}}{3}}\end{array}} \right]\)

03

Pivot of a matrix

Apply row operation \({R_4} \to {R_4} - \frac{{44}}{{15}}{R_2}\) in the above matrix to get the pivot of a matrix.

\(\left[ {\begin{array}{*{20}{c}}{12}&{ - 7}&{11}&{ - 9}&5\\0&{ - \frac{5}{4}}&{\frac{1}{4}}&{\frac{1}{4}}&{\frac{3}{4}}\\0&0&0&0&{ - 2}\\0&0&{\frac{{28}}{5}}&{ - \frac{{41}}{{15}}}&{\frac{{122}}{{15}}}\end{array}} \right]\)

Now, after interchanging the rows \({R_3} \leftrightarrow {R_4}\) in the above matrix, you get:

\(\left[ {\begin{array}{*{20}{c}}{12}&{ - 7}&{11}&{ - 9}&5\\0&{ - \frac{5}{4}}&{\frac{1}{4}}&{\frac{1}{4}}&{\frac{3}{4}}\\0&0&{\frac{{28}}{5}}&{ - \frac{{41}}{{15}}}&{\frac{{122}}{{15}}}\\0&0&0&0&{ - 2}\end{array}} \right]\)

04

Determine the span

The pivots in the matrix columns are represented as:


The matrix has a pivot in every row.

Hence, the columns of the matrix are in span \({R^4}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose Tand U are linear transformations from \({\mathbb{R}^n}\) to \({\mathbb{R}^n}\) such that \(T\left( {U{\mathop{\rm x}\nolimits} } \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\) . Is it true that \(U\left( {T{\mathop{\rm x}\nolimits} } \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\)? Why or why not?

Consider a dynamical system x(t+1)=Ax(t) with two components. The accompanying sketch shows the initial state vector x0and two eigen vectors υ1andυ2 of A (with eigen values λ1andλ2 respectively). For the given values of λ1andλ2, draw a rough trajectory. Consider the future and the past of the system.

λ1=1,λ2=0.9

Question: Determine whether the statements that follow are true or false, and justify your answer.

19. There exits a matrix A such thatA[-12]=[357].

Suppose an experiment leads to the following system of equations:

\(\begin{aligned}{c}{\bf{4}}.{\bf{5}}{x_{\bf{1}}} + {\bf{3}}.{\bf{1}}{x_{\bf{2}}} = {\bf{19}}.{\bf{249}}\\1.6{x_{\bf{1}}} + 1.1{x_{\bf{2}}} = 6.843\end{aligned}\) (3)

  1. Solve system (3), and then solve system (4), below, in which the data on the right have been rounded to two decimal places. In each case, find the exactsolution.

\(\begin{aligned}{c}{\bf{4}}.{\bf{5}}{x_{\bf{1}}} + {\bf{3}}.{\bf{1}}{x_{\bf{2}}} = {\bf{19}}.{\bf{25}}\\1.6{x_{\bf{1}}} + 1.1{x_{\bf{2}}} = 6.8{\bf{4}}\end{aligned}\) (4)

  1. The entries in (4) differ from those in (3) by less than .05%. Find the percentage error when using the solution of (4) as an approximation for the solution of (3).
  1. Use your matrix program to produce the condition number of the coefficient matrix in (3).

Determine whether the statements that follow are true or false, and justify your answer.

15: The systemAx=[0001]isinconsistent for all 4×3 matrices A.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free