Let \({\bf{b}} = \left[ {\begin{array}{*{20}{c}}7\\5\\9\\7\end{array}} \right]\) and let A be the matrix in Exercise 38. Is b in the range of the transformation \({\bf{x}}| \to A{\bf{x}}\)? If so, find an x whose image under the transformation is b.

Short Answer

Expert verified

Yes, bis in the range of the transformation. One of the choices for x is \(\left( {4,7,1,0} \right)\) whose image under the transformation is b.

Step by step solution

01

Convert the augmented matrix into the row reduction echelon form

Consider matrix \(A = \left[ {\begin{array}{*{20}{c}}4&{ - 2}&5&{ - 5}\\{ - 9}&7&{ - 8}&0\\{ - 6}&4&5&3\\5&{ - 3}&8&{ - 4}\end{array}} \right]\).

Obtain the augmented matrix\(\left[ {\begin{array}{*{20}{c}}A&b\end{array}} \right]\).

\(\left[ {\begin{array}{*{20}{c}}4&{ - 2}&5&{ - 5}&7\\{ - 9}&7&{ - 8}&0&5\\{ - 6}&4&5&3&9\\5&{ - 3}&8&{ - 4}&7\end{array}} \right]\)

Use code in the MATLAB to obtain the row-reduced echelon form as shown below:

\(\begin{array}{l} > > {\rm{ A }} = {\rm{ }}\left[ {4{\rm{ }} - 2{\rm{ 5 }} - {\rm{5 7}};{\rm{ }} - 9{\rm{ }}7{\rm{ }} - 8{\rm{ 0 5}};{\rm{ }} - {\rm{6 4 5 3 9}};{\rm{ 5 }} - 3{\rm{ 8 }} - {\rm{4 7}}} \right];\\ > > {\rm{ U}} = {\rm{rref}}\left( {\rm{A}} \right)\end{array}\)

\(\left[ {\begin{array}{*{20}{c}}4&{ - 2}&5&{ - 5}&7\\{ - 9}&7&{ - 8}&0&5\\{ - 6}&4&5&3&9\\5&{ - 3}&8&{ - 4}&7\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&0&0&{ - 7/2}&4\\0&1&0&{ - 9/2}&7\\0&0&1&0&1\\0&0&0&0&0\end{array}} \right]\)

02

Write the augmented matrix into the system of equations

The system of equations is shown below:

\(\begin{aligned}{c}{x_1} - \frac{7}{2}{x_4} &= 4\\{x_2} - \frac{9}{2}{x_4} &= 7\\{x_3} &= 1\end{aligned}\)

From the above system of equations, it is observed that the augmented matrix is a consistent system.

Thus, bis in the range of the transformation.

03

Separate the variables into free and basic variables

From the above equations, \({x_1}\), \({x_2}\), and \({x_3}\) correspond to the pivot positions. So, \({x_1}\), \({x_2}\), and \({x_3}\) are the basic variables, and \({x_4}\) is a free variable.

Let \({x_4} = t\).

04

Obtain the value of the basic variables in parametric forms

Substitute the value \({x_4} = t\) in the equation \({x_1} - \frac{7}{2}{x_4} = 4\) to obtain the general solution.

\(\begin{aligned}{c}{x_1} - \frac{7}{2}\left( t \right) &= 4\\{x_1} &= 4 + \frac{{7t}}{2}\end{aligned}\)

Substitute the value \({x_4} = t\) in the equation \({x_2} - \frac{9}{2}{x_4} = 7\) to obtain the general solution.

\(\begin{aligned}{c}{x_2} - \frac{9}{2}\left( t \right) &= 7\\{x_2} &= 7 + \frac{{9t}}{2}\end{aligned}\)

05

Write the solution in a parametric form

Obtain the vector in a parametric form by using \({x_1} = 4 + \frac{{7t}}{2}\), \({x_2} = 7 + \frac{{9t}}{2}\), \({x_3} = 1\), and \({x_4} = t\).

\(\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\frac{{7t}}{2} + 4}\\{\frac{{9t}}{2} + 7}\\1\\t\end{array}} \right]\)

Or, it can be written as shown below:

\(\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\frac{{7{x_4}}}{2} + 4}\\{\frac{{9{x_4}}}{2} + 7}\\1\\{{x_4}}\end{array}} \right]\)

When \({x_4} = 0\), the solution is obtained as shown below:

\(\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}4\\7\\1\\0\end{array}} \right]\)

Thus, the solution is \(\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}4\\7\\1\\0\end{array}} \right]\) or \({\bf{x}} = \left[ {\begin{array}{*{20}{c}}4\\7\\1\\0\end{array}} \right]\).

Therefore, bis in the range of the transformation. One of the choices for x is \(\left( {4,7,1,0} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \({{\mathop{\rm v}\nolimits} _1} = \left[ {\begin{array}{*{20}{c}}1\\0\\{ - 2}\end{array}} \right],{v_2} = \left[ {\begin{array}{*{20}{c}}{ - 3}\\1\\8\end{array}} \right],\) and \({\rm{y = }}\left[ {\begin{array}{*{20}{c}}h\\{ - 5}\\{ - 3}\end{array}} \right]\). For what values(s) of \(h\) is \(y\) in the plane generated by \({{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _2}\)

Suppose Tand Ssatisfy the invertibility equations (1) and (2), where T is a linear transformation. Show directly that Sis a linear transformation. (Hint: Given u, v in \({\mathbb{R}^n}\), let \({\mathop{\rm x}\nolimits} = S\left( {\mathop{\rm u}\nolimits} \right),{\mathop{\rm y}\nolimits} = S\left( {\mathop{\rm v}\nolimits} \right)\). Then \(T\left( {\mathop{\rm x}\nolimits} \right) = {\mathop{\rm u}\nolimits} \), \(T\left( {\mathop{\rm y}\nolimits} \right) = {\mathop{\rm v}\nolimits} \). Why? Apply Sto both sides of the equation \(T\left( {\mathop{\rm x}\nolimits} \right) + T\left( {\mathop{\rm y}\nolimits} \right) = T\left( {{\mathop{\rm x}\nolimits} + y} \right)\). Also, consider \(T\left( {cx} \right) = cT\left( x \right)\).)

Consider a dynamical system x(t+1)=Ax(t) with two components. The accompanying sketch shows the initial state vector x0and two eigen vectors υ1andυ2 of A (with eigen values λ1andλ2 respectively). For the given values of λ1andλ2, draw a rough trajectory. Consider the future and the past of the system.

λ1=1,λ2=0.9

In Exercises 33 and 34, Tis a linear transformation from \({\mathbb{R}^2}\) into \({\mathbb{R}^2}\). Show that T is invertible and find a formula for \({T^{ - 1}}\).

33. \(T\left( {{x_1},{x_2}} \right) = \left( { - 5{x_1} + 9{x_2},4{x_1} - 7{x_2}} \right)\)

Construct a \(3 \times 3\) matrix\(A\), with nonzero entries, and a vector \(b\) in \({\mathbb{R}^3}\) such that \(b\) is not in the set spanned by the columns of\(A\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free