In Exercise 1-10, assume that \(T\) is a linear transformation. Find the standard matrix of \(T\).

\(T:{\mathbb{R}^3} \to {\mathbb{R}^2}\), rotates points (about the origin) through \(\frac{{3\pi }}{2}\)radians (counter-clockwise).

Short Answer

Expert verified

\(\left[ {\begin{array}{*{20}{c}}0&1\\{ - 1}&0\end{array}} \right]\)

Step by step solution

01

Find the value of \(T\) using linear transformation

Using linear transformation,

\(\begin{aligned}{c}T &= T\left( {{x_1}{e_1} + {x_2}{e_2}} \right)\\ &= {x_1}T\left( {{e_1}} \right) + {x_2}T\left( {{e_2}} \right)\\ &= \left[ {\begin{array}{*{20}{c}}{T\left( {{e_1}} \right)}&{T\left( {{e_2}} \right)}\end{array}} \right]x\end{aligned}\)

02

Find the transformation for \(T\left( {{e_1}} \right)\) and \(T\left( {{e_2}} \right)\)

Transformation represents the rotation of\(\frac{{3\pi }}{2}\)radian about the origin (counterclockwise).

\(T\left( {{e_1}} \right) = - {e_2}\) and \(T\left( {{e_2}} \right) = {e_1}\).

03

Find the transformation for \(T\left( {{e_1}} \right)\) and \(T\left( {{e_2}} \right)\)

By the equation \(T = \left[ {\begin{array}{*{20}{c}}{T\left( {{e_1}} \right)}&{T\left( {{e_2}} \right)}\end{array}} \right]x\),

\(T = \left[ {\begin{array}{*{20}{c}}{ - {e_2}}&{{e_1}}\end{array}} \right]x\).

04

Find the standard matrix \(T\) for linear transformation

\({e_1} = \left[ {\begin{array}{*{20}{c}}1\\0\end{array}} \right]\)and\({e_2} = \left[ {\begin{array}{*{20}{c}}0\\1\end{array}} \right]\).

In the equation \(T = Ax\), the matrix \(A\) is the matrix forlinear transformation \(T\).

By the equation \(T = \left[ {\begin{array}{*{20}{c}}{ - {e_2}}&{{e_1}}\end{array}} \right]x\),

\(T = \left[ {\begin{array}{*{20}{c}}0&1\\{ - 1}&0\end{array}} \right]x\).

Matrix \(A\) is \(\left[ {\begin{array}{*{20}{c}}0&1\\{ - 1}&0\end{array}} \right]\).

So, the linear transformation matrix is \(\left[ {\begin{array}{*{20}{c}}0&1\\{ - 1}&0\end{array}} \right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Explain why a set \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3},{{\mathop{\rm v}\nolimits} _4}} \right\}\) in \({\mathbb{R}^5}\) must be linearly independent when \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}} \right\}\) is linearly independent and \({{\mathop{\rm v}\nolimits} _4}\) is not in Span \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}} \right\}\).

Suppose Ais an \(n \times n\) matrix with the property that the equation \(Ax = 0\)has only the trivial solution. Without using the Invertible Matrix Theorem, explain directly why the equation \(Ax = b\) must have a solution for each b in \({\mathbb{R}^n}\).

In Exercise 23 and 24, make each statement True or False. Justify each answer.

24.

a. Any list of five real numbers is a vector in \({\mathbb{R}^5}\).

b. The vector \({\mathop{\rm u}\nolimits} \) results when a vector \({\mathop{\rm u}\nolimits} - v\) is added to the vector \({\mathop{\rm v}\nolimits} \).

c. The weights \({{\mathop{\rm c}\nolimits} _1},...,{c_p}\) in a linear combination \({c_1}{v_1} + \cdot \cdot \cdot + {c_p}{v_p}\) cannot all be zero.

d. When are \({\mathop{\rm u}\nolimits} \) nonzero vectors, Span \(\left\{ {u,v} \right\}\) contains the line through \({\mathop{\rm u}\nolimits} \) and the origin.

e. Asking whether the linear system corresponding to an augmented matrix \(\left[ {\begin{array}{*{20}{c}}{{{\rm{a}}_{\rm{1}}}}&{{{\rm{a}}_{\rm{2}}}}&{{{\rm{a}}_{\rm{3}}}}&{\rm{b}}\end{array}} \right]\) has a solution amounts to asking whether \({\mathop{\rm b}\nolimits} \) is in Span\(\left\{ {{a_1},{a_2},{a_3}} \right\}\).

In Exercise 19 and 20, choose \(h\) and \(k\) such that the system has

a. no solution

b. unique solution

c. many solutions.

Give separate answers for each part.

19. \(\begin{array}{l}{x_1} + h{x_2} = 2\\4{x_1} + 8{x_2} = k\end{array}\)

In (a) and (b), suppose the vectors are linearly independent. What can you say about the numbers \(a,....,f\) ? Justify your answers. (Hint: Use a theorem for (b).)

  1. \(\left( {\begin{aligned}{*{20}{c}}a\\0\\0\end{aligned}} \right),\left( {\begin{aligned}{*{20}{c}}b\\c\\d\end{aligned}} \right),\left( {\begin{aligned}{*{20}{c}}d\\e\\f\end{aligned}} \right)\)
  2. \(\left( {\begin{aligned}{*{20}{c}}a\\1\\0\\0\end{aligned}} \right),\left( {\begin{aligned}{*{20}{c}}b\\c\\1\\0\end{aligned}} \right),\left( {\begin{aligned}{*{20}{c}}d\\e\\f\\1\end{aligned}} \right)\)
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free