In Exercises 37–40, let T be the linear transformation whose standard matrix is given. In Exercises 37 and 38, decide if T is a one-to-one mapping. In Exercises 39 and 40, decide if T maps \({\mathbb{R}^{\bf{5}}}\) onto \({\mathbb{R}^{\bf{5}}}\). Justify your answers.

40. \(\left[ {\begin{array}{*{20}{c}}9&{13}&5&6&{ - 1}\\{14}&{15}&{ - 7}&{ - 6}&4\\{ - 8}&{ - 9}&{12}&{ - 5}&{ - 9}\\{ - 5}&{ - 6}&{ - 8}&9&8\\{13}&{14}&{15}&2&{11}\end{array}} \right]\)

Short Answer

Expert verified

Transformation T does not map \({\mathbb{R}^{\bf{5}}}\) onto \({\mathbb{R}^{\bf{5}}}\).

Step by step solution

01

Identify the condition for onto mapping

The transformation maps\({\mathbb{R}^n}\)onto\({\mathbb{R}^m}\)if at least one solution exists for\(T\left( {\bf{x}} \right) = {\bf{b}}\), and each vector b is in the codomain\({\mathbb{R}^m}\).

In the map \({\mathbb{R}^m} \to {\mathbb{R}^m}\), if the columns of the standard matrix span \({\mathbb{R}^m}\), there should be a pivot in every row.

02

Convert the matrix into the row-reduced echelon form

Consider the matrix \(A = \left[ {\begin{array}{*{20}{c}}9&{13}&5&6&{ - 1}\\{14}&{15}&{ - 7}&{ - 6}&4\\{ - 8}&{ - 9}&{12}&{ - 5}&{ - 9}\\{ - 5}&{ - 6}&{ - 8}&9&8\\{13}&{14}&{15}&2&{11}\end{array}} \right]\).

Use the code in MATLAB to obtain the row-reduced echelon form, as shown below:

\(\begin{array}{l} > > {\rm{ A }} = {\rm{ }}\left[ \begin{array}{l}{\rm{9 13 5 6 }} - {\rm{1}};{\rm{ 14 15 }} - {\rm{7 }} - {\rm{6 4}};{\rm{ }} - 8{\rm{ }} - {\rm{9 12 }} - 5{\rm{ }} - {\rm{9}};\\ - {\rm{5 }} - 6{\rm{ }} - {\rm{8 9 8; 13 14 15 2 11}}\end{array} \right];\\ > > {\rm{ U}} = {\rm{rref}}\left( {\rm{A}} \right)\end{array}\)

\(\left[ {\begin{array}{*{20}{c}}9&{13}&5&6&{ - 1}\\{14}&{15}&{ - 7}&{ - 6}&4\\{ - 8}&{ - 9}&{12}&{ - 5}&{ - 9}\\{ - 5}&{ - 6}&{ - 8}&9&8\\{13}&{14}&{15}&2&{11}\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&0&0&0&5\\0&1&0&0&{ - 4}\\0&0&1&0&0\\0&0&0&1&1\\0&0&0&0&0\end{array}} \right]\)

In the obtained matrix, the fifth column does not have a pivot position. So, it does not span \({\mathbb{R}^5}\).

Thus, transformation T does not map \({\mathbb{R}^{\bf{5}}}\) onto \({\mathbb{R}^{\bf{5}}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free