Suppose Tand Ssatisfy the invertibility equations (1) and (2), where T is a linear transformation. Show directly that Sis a linear transformation. (Hint: Given u, v in \({\mathbb{R}^n}\), let \({\mathop{\rm x}\nolimits} = S\left( {\mathop{\rm u}\nolimits} \right),{\mathop{\rm y}\nolimits} = S\left( {\mathop{\rm v}\nolimits} \right)\). Then \(T\left( {\mathop{\rm x}\nolimits} \right) = {\mathop{\rm u}\nolimits} \), \(T\left( {\mathop{\rm y}\nolimits} \right) = {\mathop{\rm v}\nolimits} \). Why? Apply Sto both sides of the equation \(T\left( {\mathop{\rm x}\nolimits} \right) + T\left( {\mathop{\rm y}\nolimits} \right) = T\left( {{\mathop{\rm x}\nolimits} + y} \right)\). Also, consider \(T\left( {cx} \right) = cT\left( x \right)\).)

Short Answer

Expert verified

It is proved that Sis a linear transformation.

Step by step solution

01

Show that S preserves sums

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be a linear transformation and Abe the standard matrix for T. Then, according totheorem 9, Tis invertible if and only if Ais an invertible matrix. The linear transformation S, given by \(S\left( x \right) = {A^{ - 1}}{\mathop{\rm x}\nolimits} \), is the unique function satisfying the equations

  1. \(S\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \), for all x in \({\mathbb{R}^n}\), and
  2. \(T\left( {S\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \), for all x in \({\mathbb{R}^n}\).

It is given that u, and v are in \({\mathbb{R}^n}\).

If \(x = S\left( {\mathop{\rm u}\nolimits} \right)\) and \(y = S\left( {\mathop{\rm v}\nolimits} \right)\), then \(T\left( x \right) = T\left( {S\left( {\mathop{\rm u}\nolimits} \right)} \right) = {\mathop{\rm u}\nolimits} \) and \(T\left( y \right) = T\left( {S\left( {\mathop{\rm v}\nolimits} \right)} \right) = {\mathop{\rm v}\nolimits} \) from equation (2). Thus,

\(\begin{array}{c}S\left( {{\mathop{\rm u}\nolimits} + {\mathop{\rm v}\nolimits} } \right) = S\left( {T\left( x \right) + T\left( y \right)} \right)\\ = S\left( {T\left( {x + y} \right)} \right)\,\,\,\,{\rm{ (}}{\mathop{\rm Since}\nolimits} \,\,T\,\,{\mathop{\rm is}\nolimits} \,\,{\mathop{\rm linear}\nolimits} )\\ = x + y\,\,\,\,\,{\rm{ (}}By\,\,equation\,\,\left( 1 \right))\\ = S\left( {\mathop{\rm u}\nolimits} \right) + S\left( {\mathop{\rm v}\nolimits} \right).\end{array}\)

Therefore, Spreserves sums.

02

Show that S is a linear transformation

For any scalar r,

\(\begin{array}{c}S\left( {r{\mathop{\rm u}\nolimits} } \right) = S\left( {rT\left( {\mathop{\rm x}\nolimits} \right)} \right)\\ = S\left( {T\left( {r{\mathop{\rm x}\nolimits} } \right)} \right)\,\,\,\,{\rm{ (}}{\mathop{\rm Since}\nolimits} \,\,T\,\,is\,\,linear)\\ = r{\mathop{\rm x}\nolimits} \,\,\,{\rm{ (}}\,{\mathop{\rm By}\nolimits} \,\,equation\left( 1 \right))\\ = rS\left( {\mathop{\rm u}\nolimits} \right).\end{array}\)

Spreserves the scalar multiples, and hence,itis a linear transformation.

Thus, it is proved that Sis a linear transformation.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 15 and 16, list five vectors in Span \(\left\{ {{v_1},{v_2}} \right\}\). For each vector, show the weights on \({{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _2}\) used to generate the vector and list the three entries of the vector. Do not make a sketch.

16. \({{\mathop{\rm v}\nolimits} _1} = \left[ {\begin{array}{*{20}{c}}3\\0\\2\end{array}} \right],{v_2} = \left[ {\begin{array}{*{20}{c}}{ - 2}\\0\\3\end{array}} \right]\)

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be an invertible linear transformation. Explain why T is both one-to-one and onto \({\mathbb{R}^n}\). Use equations (1) and (2). Then give a second explanation using one or more theorems.

Question:Let A be the n x n matrix with 0's on the main diagonal, and 1's everywhere else. For an arbitrary vector bin n, solve the linear system Ax=b, expressing the components x1,.......,xnof xin terms of the components of b. See Exercise 69 for the case n=3 .

In Exercises 13 and 14, determine if \({\mathop{\rm b}\nolimits} \) is a linear combination of the vectors formed from the columns of the matrix \(A\).

14. \(A = \left[ {\begin{array}{*{20}{c}}1&{ - 2}&{ - 6}\\0&3&7\\1&{ - 2}&5\end{array}} \right],{\mathop{\rm b}\nolimits} = \left[ {\begin{array}{*{20}{c}}{11}\\{ - 5}\\9\end{array}} \right]\)

Let \({{\bf{a}}_1}\) \({{\bf{a}}_2}\), and b be the vectors in \({\mathbb{R}^{\bf{2}}}\) shown in the figure, and let \(A = \left( {\begin{aligned}{*{20}{c}}{{{\bf{a}}_1}}&{{{\bf{a}}_2}}\end{aligned}} \right)\). Does the equation \(A{\bf{x}} = {\bf{b}}\) have a solution? If so, is the solution unique? Explain.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free