In Exercises 41 and 42, use as many columns of A as possible to construct a matrix B with the property that the equation \(B{\bf{x}} = 0\) has only the trivial solution. Solve \(B{\bf{x}} = 0\) to verify your work.

41. \(A = \left[ {\begin{array}{*{20}{c}}8&{ - 3}&0&{ - 7}&2\\{ - 9}&4&5&{11}&{ - 7}\\6&{ - 2}&2&{ - 4}&4\\5&{ - 1}&7&0&{10}\end{array}} \right]\)

Short Answer

Expert verified

The matrix is \(B = \left[ {\begin{array}{*{20}{c}}8&{ - 3}&2\\{ - 9}&4&{ - 7}\\6&{ - 2}&4\\5&{ - 1}&{10}\end{array}} \right]\),\(B = \left[ {\begin{array}{*{20}{c}}8&0&2\\{ - 9}&5&{ - 7}\\6&2&4\\5&7&{10}\end{array}} \right]\), or\(B = \left[ {\begin{array}{*{20}{c}}8&{ - 7}&2\\{ - 9}&{11}&{ - 7}\\6&{ - 4}&4\\5&0&{10}\end{array}} \right]\).

The equation \(B{\bf{x}} = 0\) has a trivial solution.

Step by step solution

01

Identify pivot position

To identify the pivot and the pivot position, observe the matrix’s leftmost column (nonzero column), that is, the pivot column. At the top of this column, 8 is the pivot.

02

Apply row operation

Consider matrix \(A = \left[ {\begin{array}{*{20}{c}}8&{ - 3}&0&{ - 7}&2\\{ - 9}&4&5&{11}&{ - 7}\\6&{ - 2}&2&{ - 4}&4\\5&{ - 1}&7&0&{10}\end{array}} \right]\).

Use code in the MATLAB to obtain the row-reduced echelon form as shown below:

\(\begin{array}{l} > > {\rm{ A }} = {\rm{ }}\left[ {{\rm{8 }} - 3{\rm{ }}0{\rm{ }} - 7{\rm{ 2}};{\rm{ }} - 9{\rm{ 4 5 }}11{\rm{ }} - {\rm{7}};{\rm{ 6 }} - {\rm{2 2 }} - {\rm{4 4}};{\rm{ 5 }} - 1{\rm{ 7 0 }}10} \right];\\ > > {\rm{ U}} = {\rm{rref}}\left( {\rm{A}} \right)\end{array}\)

\(\left[ {\begin{array}{*{20}{c}}8&{ - 3}&0&{ - 7}&2\\{ - 9}&4&5&{11}&{ - 7}\\6&{ - 2}&2&{ - 4}&4\\5&{ - 1}&7&0&{10}\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&0&3&1&0\\0&1&8&5&0\\0&0&0&0&1\\0&0&0&0&0\end{array}} \right]\)

03

Mark the pivot positions in the matrix

Mark the nonzero leading entries in columns 1, 2, and 5.

Now, mark the pivot columns of the given matrix as shown below:

04

Construct matrix B

Construct matrix B by using the 1, 2, and 5 pivot columns of the matrixas shown below:

\(B = \left[ {\begin{array}{*{20}{c}}8&{ - 3}&2\\{ - 9}&4&{ - 7}\\6&{ - 2}&4\\5&{ - 1}&{10}\end{array}} \right]\)

Matrix B can also be written using column 3 or column 4 of matrix A in the place of column 2 of matrix B as shown below:

\(B = \left[ {\begin{array}{*{20}{c}}8&0&2\\{ - 9}&5&{ - 7}\\6&2&4\\5&7&{10}\end{array}} \right]\)

Or,

\(B = \left[ {\begin{array}{*{20}{c}}8&{ - 7}&2\\{ - 9}&{11}&{ - 7}\\6&{ - 4}&4\\5&0&{10}\end{array}} \right]\)

05

Show that \(B{\bf{x}} = 0\) has a trivial solution

Use matrix\(B = \left[ {\begin{array}{*{20}{c}}8&{ - 3}&2\\{ - 9}&4&{ - 7}\\6&{ - 2}&4\\5&{ - 1}&{10}\end{array}} \right]\)in the equation\(B{\bf{x}} = 0\)to show that the system has a trivial solution.

\(\left[ {\begin{array}{*{20}{c}}8&{ - 3}&2\\{ - 9}&4&{ - 7}\\6&{ - 2}&4\\5&{ - 1}&{10}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}0\\0\\0\end{array}} \right]\)

The above matrix equation in the augmented matrix \[\left[ {\begin{array}{*{20}{c}}B&0\end{array}} \right]\] can be written as shown below:

\(\left[ {\begin{array}{*{20}{c}}8&{ - 3}&2&0\\{ - 9}&4&{ - 7}&0\\6&{ - 2}&4&0\\5&{ - 1}&{10}&0\end{array}} \right]\)

Use code in the MATLAB to obtain the row-reduced echelon form as shown below:

\(\begin{array}{l} > > {\rm{ A }} = {\rm{ }}\left[ {8{\rm{ }} - 3{\rm{ }}2{\rm{ }}0;{\rm{ }} - 9{\rm{ }}4{\rm{ }} - 7{\rm{ }}0{\rm{ }};{\rm{ }}6{\rm{ }} - 2{\rm{ }}4{\rm{ }}0;{\rm{ }}5{\rm{ }} - 1{\rm{ }}10{\rm{ }}0} \right];\\ > > {\rm{ U}} = {\rm{rref}}\left( {\rm{A}} \right)\end{array}\)

\(\left[ {\begin{array}{*{20}{c}}8&{ - 3}&2&0\\{ - 9}&4&{ - 7}&0\\6&{ - 2}&4&0\\5&{ - 1}&{10}&0\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&0\end{array}} \right]\)

In the equation, the matrix row can be written as shown below:

\(\begin{array}{l}{x_1} = 0\\{x_2} = 0\\{x_3} = 0\end{array}\)

Thus, \(B{\bf{x}} = 0\) has a trivial solution.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Describe the possible echelon forms of the matrix A. Use the notation of Example 1 in Section 1.2.

a. A is a \({\bf{2}} \times {\bf{3}}\) matrix whose columns span \({\mathbb{R}^{\bf{2}}}\).

b. A is a \({\bf{3}} \times {\bf{3}}\) matrix whose columns span \({\mathbb{R}^{\bf{3}}}\).

Question: Determine whether the statements that follow are true or false, and justify your answer.

16: There exists a 2x2 matrix such that

A[11]=[12]andA[22]=[21].

Suppose a linear transformation \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) has the property that \(T\left( {\mathop{\rm u}\nolimits} \right) = T\left( {\mathop{\rm v}\nolimits} \right)\) for some pair of distinct vectors u and v in \({\mathbb{R}^n}\). Can Tmap \({\mathbb{R}^n}\) onto \({\mathbb{R}^n}\)? Why or why not?

Consider the problem of determining whether the following system of equations is consistent:

\(\begin{aligned}{c}{\bf{4}}{x_1} - {\bf{2}}{x_2} + {\bf{7}}{x_3} = - {\bf{5}}\\{\bf{8}}{x_1} - {\bf{3}}{x_2} + {\bf{10}}{x_3} = - {\bf{3}}\end{aligned}\)

  1. Define appropriate vectors, and restate the problem in terms of linear combinations. Then solve that problem.
  1. Define an appropriate matrix, and restate the problem using the phrase “columns of A.”
  1. Define an appropriate linear transformation T using the matrix in (b), and restate the problem in terms of T.

Determine which of the matrices in Exercises 7–12areorthogonal. If orthogonal, find the inverse.

11. \(\left( {\begin{aligned}{{}}{2/3}&{2/3}&{1/3}\\0&{1/3}&{ - 2/3}\\{5/3}&{ - 4/3}&{ - 2/3}\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free