Chapter 1: Q42E (page 1)
In Exercises 41 and 42, use as many columns of A as possible to construct a matrix B with the property that the equation \(B{\bf{x}} = 0\) has only the trivial solution. Solve \(B{\bf{x}} = 0\) to verify your work.
42. \(A = \left[ {\begin{array}{*{20}{c}}{12}&{10}&{ - 6}&{ - 3}&7&{10}\\{ - 7}&{ - 6}&4&7&{ - 9}&5\\9&9&{ - 9}&{ - 5}&5&{ - 1}\\{ - 4}&{ - 3}&1&6&{ - 8}&9\\8&7&{ - 5}&{ - 9}&{11}&{ - 8}\end{array}} \right]\)
Short Answer
Matrix B is \(B = \left[ {\begin{array}{*{20}{c}}{12}&{10}&{ - 3}&{10}\\{ - 7}&{ - 6}&7&5\\9&9&{ - 5}&{ - 1}\\{ - 4}&{ - 3}&6&9\\8&7&{ - 9}&{ - 8}\end{array}} \right]\).
The equation \(B{\bf{x}} = 0\) has a trivial solution.