In Exercises 41 and 42, use as many columns of A as possible to construct a matrix B with the property that the equation \(B{\bf{x}} = 0\) has only the trivial solution. Solve \(B{\bf{x}} = 0\) to verify your work.

42. \(A = \left[ {\begin{array}{*{20}{c}}{12}&{10}&{ - 6}&{ - 3}&7&{10}\\{ - 7}&{ - 6}&4&7&{ - 9}&5\\9&9&{ - 9}&{ - 5}&5&{ - 1}\\{ - 4}&{ - 3}&1&6&{ - 8}&9\\8&7&{ - 5}&{ - 9}&{11}&{ - 8}\end{array}} \right]\)

Short Answer

Expert verified

Matrix B is \(B = \left[ {\begin{array}{*{20}{c}}{12}&{10}&{ - 3}&{10}\\{ - 7}&{ - 6}&7&5\\9&9&{ - 5}&{ - 1}\\{ - 4}&{ - 3}&6&9\\8&7&{ - 9}&{ - 8}\end{array}} \right]\).

The equation \(B{\bf{x}} = 0\) has a trivial solution.

Step by step solution

01

Identify pivot position

To identify the pivot and the pivot position, observe the matrix’s leftmost column (nonzero column), that is, the pivot column. At the top of this column, 8 is the pivot.

02

Apply row operation

Consider matrix \(A = \left[ {\begin{array}{*{20}{c}}{12}&{10}&{ - 6}&{ - 3}&7&{10}\\{ - 7}&{ - 6}&4&7&{ - 9}&5\\9&9&{ - 9}&{ - 5}&5&{ - 1}\\{ - 4}&{ - 3}&1&6&{ - 8}&9\\8&7&{ - 5}&{ - 9}&{11}&{ - 8}\end{array}} \right]\).

Apply the row operation by using MATLAB to obtain the row-reduced echelon form as shown below:

\(\left[ {\begin{array}{*{20}{c}}{12}&{10}&{ - 6}&{ - 3}&7&{10}\\{ - 7}&{ - 6}&4&7&{ - 9}&5\\9&9&{ - 9}&{ - 5}&5&{ - 1}\\{ - 4}&{ - 3}&1&6&{ - 8}&9\\8&7&{ - 5}&{ - 9}&{11}&{ - 8}\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&0&2&0&2&0\\0&1&{ - 3}&0&{ - 2}&0\\0&0&0&1&{ - 1}&0\\0&0&0&0&0&1\\0&0&0&0&0&0\end{array}} \right]\)

03

Mark the pivot positions in the matrix

Mark the nonzero leading entries in columns 1, 2, 4, and 6.

Now, mark the pivot columns of the given matrix as shown below:

04

Construct matrix B

Construct matrix B by using 1, 2, 4, and 6 pivot columns of the matrixas shown below:

\(B = \left[ {\begin{array}{*{20}{c}}{12}&{10}&{ - 3}&{10}\\{ - 7}&{ - 6}&7&5\\9&9&{ - 5}&{ - 1}\\{ - 4}&{ - 3}&6&9\\8&7&{ - 9}&{ - 8}\end{array}} \right]\)

Matrix B can also be written using column 3 or column 5 of matrix A at the place of column 2 of matrix B or column 4 of matrix B,respectively,as shown below:

\(B = \left[ {\begin{array}{*{20}{c}}{12}&{ - 6}&{ - 3}&{10}\\{ - 7}&4&7&5\\9&{ - 9}&{ - 5}&{ - 1}\\{ - 4}&1&6&9\\8&{ - 5}&{ - 9}&{ - 8}\end{array}} \right]\)

Or,

\(B = \left[ {\begin{array}{*{20}{c}}{12}&{10}&{ - 3}&7\\{ - 7}&{ - 6}&7&{ - 9}\\9&9&{ - 5}&5\\{ - 4}&{ - 3}&6&{ - 8}\\8&7&{ - 9}&{11}\end{array}} \right]\)

05

Show that \(B{\bf{x}} = 0\) has a trivial solution

Use matrix\(B = \left[ {\begin{array}{*{20}{c}}{12}&{10}&{ - 3}&{10}\\{ - 7}&{ - 6}&7&5\\9&9&{ - 5}&{ - 1}\\{ - 4}&{ - 3}&6&9\\8&7&{ - 9}&{ - 8}\end{array}} \right]\)in the equation\(B{\bf{x}} = 0\)to show that the system has a trivial solution.

\(\left[ {\begin{array}{*{20}{c}}{12}&{10}&{ - 3}&{10}\\{ - 7}&{ - 6}&7&5\\9&9&{ - 5}&{ - 1}\\{ - 4}&{ - 3}&6&9\\8&7&{ - 9}&{ - 8}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}0\\0\\0\\0\end{array}} \right]\)

The above matrix equation in the augmented matrix \(\left[ {\begin{array}{*{20}{c}}B&0\end{array}} \right]\) can be written as shown below:

\(\left[ {\begin{array}{*{20}{c}}{12}&{10}&{ - 3}&{10}&0\\{ - 7}&{ - 6}&7&5&0\\9&9&{ - 5}&{ - 1}&0\\{ - 4}&{ - 3}&6&9&0\\8&7&{ - 9}&{ - 8}&0\end{array}} \right]\)

Apply the row operation by using MATLAB to obtain the row-reduced echelon form as shown below:

\(\left[ {\begin{array}{*{20}{c}}{12}&{10}&{ - 3}&{10}&0\\{ - 7}&{ - 6}&7&5&0\\9&9&{ - 5}&{ - 1}&0\\{ - 4}&{ - 3}&6&9&0\\8&7&{ - 9}&{ - 8}&0\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&0&0&0&0\\0&1&0&0&0\\0&0&1&0&0\\0&0&0&1&0\\0&0&0&0&0\end{array}} \right]\)

In the equation, the matrix row can be written as shown below:

\(\begin{array}{l}{x_1} = 0\\{x_2} = 0\\{x_3} = 0\\{x_4} = 0\end{array}\)

Thus, the equation \(B{\bf{x}} = 0\) has a trivial solution.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 13 and 14, determine if \({\mathop{\rm b}\nolimits} \) is a linear combination of the vectors formed from the columns of the matrix \(A\).

14. \(A = \left[ {\begin{array}{*{20}{c}}1&{ - 2}&{ - 6}\\0&3&7\\1&{ - 2}&5\end{array}} \right],{\mathop{\rm b}\nolimits} = \left[ {\begin{array}{*{20}{c}}{11}\\{ - 5}\\9\end{array}} \right]\)

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be an invertible linear transformation. Explain why T is both one-to-one and onto \({\mathbb{R}^n}\). Use equations (1) and (2). Then give a second explanation using one or more theorems.

Find the general solutions of the systems whose augmented matrices are given as

12. \(\left[ {\begin{array}{*{20}{c}}1&{ - 7}&0&6&5\\0&0&1&{ - 2}&{ - 3}\\{ - 1}&7&{ - 4}&2&7\end{array}} \right]\).

In Exercises 23 and 24, key statements from this section are either quoted directly, restated slightly (but still true), or altered in some way that makes them false in some cases. Mark each statement True or False, and justify your answer. (If true, give the approximate location where a similar statement appears, or refer to a definition or theorem. If false, give the location of a statement that has been quoted or used incorrectly, or cite an example that shows the statement is not true in all cases.) Similar true/false questions will appear in many sections of the text.

23.

a. Every elementary row operation is reversible.

b. A \(5 \times 6\)matrix has six rows.

c. The solution set of a linear system involving variables \({x_1},\,{x_2},\,{x_3},........,{x_n}\)is a list of numbers \(\left( {{s_1},\, {s_2},\,{s_3},........,{s_n}} \right)\) that makes each equation in the system a true statement when the values \ ({s_1},\, {s_2},\, {s_3},........,{s_n}\) are substituted for \({x_1},\,{x_2},\,{x_3},........,{x_n}\), respectively.

d. Two fundamental questions about a linear system involve existence and uniqueness.

Determine whether the statements that follow are true or false, and justify your answer.

15: The systemAx=[0001]isinconsistent for all 4×3 matrices A.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free