Question 42: Find a column of matrix in \(\left[ {\begin{array}{*{20}{c}}8&{11}&{ - 6}&{ - 7}&{13}\\{ - 7}&{ - 8}&5&6&{ - 9}\\{11}&7&{ - 7}&{ - 9}&{ - 6}\\{ - 3}&4&1&8&7\end{array}} \right]\) that can be deleted and yet have the remaining matrix columns still span\({R^4}\). Can you delete more than one column?

Short Answer

Expert verified

The second column of the given matrix can be deleted, and still, the remaining matrix in span \({R^4}\)can be obtained. More than one column cannot be deleted.

Step by step solution

01

Solve matrix

Let the given matrix be\(A = \left[ {\begin{array}{*{20}{c}}8&{11}&{ - 6}&{ - 7}&{13}\\{ - 7}&{ - 8}&5&6&{ - 9}\\{11}&7&{ - 7}&{ - 9}&{ - 6}\\{ - 3}&4&1&8&7\end{array}} \right]\)and after deleting column 2 of the given matrix A,you get\(A' = \left[ {\begin{array}{*{20}{c}}8&{ - 6}&{ - 7}&{13}\\{ - 7}&5&6&{ - 9}\\{11}&{ - 7}&{ - 9}&{ - 6}\\{ - 3}&1&8&7\end{array}} \right]\).

Apply the Gaussian elimination method in matrix A to find the pivot columns in the matrix.

Apply row operation\({R_2} \to {R_2} + \frac{7}{8}{R_1}\).

\(\left[ {\begin{array}{*{20}{c}}8&{11}&{ - 6}&{ - 7}&{13}\\0&{\frac{{13}}{8}}&{ - \frac{1}{4}}&{ - \frac{1}{8}}&{\frac{{19}}{8}}\\{11}&7&{ - 7}&{ - 9}&{ - 6}\\{ - 3}&4&1&8&7\end{array}} \right]\)

Now, apply row operation\({R_3} \to {R_3} - \frac{{11}}{8}{R_1}\)again in the above matrix.

\(\left[ {\begin{array}{*{20}{c}}8&{11}&{ - 6}&{ - 7}&{13}\\0&{\frac{{13}}{8}}&{ - \frac{1}{4}}&{ - \frac{1}{8}}&{\frac{{19}}{8}}\\0&{ - \frac{{65}}{8}}&{\frac{5}{4}}&{\frac{5}{8}}&{ - \frac{{191}}{8}}\\{ - 3}&4&1&8&7\end{array}} \right]\)

02

Row operation in matrix

Apply row operation\({R_4} \to {R_4} + \frac{3}{8}{R_1}\)in the above matrix.

\(\left[ {\begin{array}{*{20}{c}}8&{11}&{ - 6}&{ - 7}&{13}\\0&{\frac{{13}}{8}}&{ - \frac{1}{4}}&{ - \frac{1}{8}}&{\frac{{19}}{8}}\\0&{ - \frac{{65}}{8}}&{\frac{5}{4}}&{\frac{5}{8}}&{ - \frac{{191}}{8}}\\0&{\frac{{65}}{8}}&{ - \frac{5}{4}}&{\frac{{43}}{8}}&{\frac{{95}}{8}}\end{array}} \right]\)

Apply row operation\({R_3} \to {R_3} + 5{R_2}\)in the above matrix.

\(\left[ {\begin{array}{*{20}{c}}8&{11}&{ - 6}&{ - 7}&{13}\\0&{\frac{{13}}{8}}&{ - \frac{1}{4}}&{ - \frac{1}{8}}&{\frac{{19}}{8}}\\0&0&0&0&{ - 12}\\0&{\frac{{65}}{8}}&{ - \frac{5}{4}}&{\frac{{43}}{8}}&{\frac{{95}}{8}}\end{array}} \right]\)

03

Pivot of a matrix

Apply row operation\({R_4} \to {R_4} - 5{R_2}\)in the above matrix to get the pivot of a matrix.

\(\left[ {\begin{array}{*{20}{c}}8&{11}&{ - 6}&{ - 7}&{13}\\0&{\frac{{13}}{8}}&{ - \frac{1}{4}}&{ - \frac{1}{8}}&{\frac{{19}}{8}}\\0&0&0&0&{ - 12}\\0&0&0&6&0\end{array}} \right]\)

Now, after interchanging the rows\({R_3} \leftrightarrow {R_4}\)in the above matrix, you get:

\(\left[ {\begin{array}{*{20}{c}}8&{11}&{ - 6}&{ - 7}&{13}\\0&{\frac{{13}}{8}}&{ - \frac{1}{4}}&{ - \frac{1}{8}}&{\frac{{19}}{8}}\\0&0&0&6&0\\0&0&0&0&{ - 12}\end{array}} \right]\)

04

Determine the span

The pivots in the matrix columns are represented as:

\(\left[ {\begin{array}{*{20}{c}} {\boxed8}&{11}&{ - 6}&{ - 7}&{13} \\ 0&{\boxed{\frac{{13}}{8}}}&{ - \frac{1}{4}}&{ - \frac{1}{8}}&{\frac{{19}}{8}} \\ 0&0&0&{\boxed6}&0 \\ 0&0&0&0&{\boxed{ - 12}} \end{array}} \right]\)

The matrix has a pivot in every row.

Let this echelon matrix be \(B = \left[ {\begin{array}{*{20}{c}}8&{11}&{ - 6}&{ - 7}&{13}\\0&{\frac{{13}}{8}}&{ - \frac{1}{4}}&{ - \frac{1}{8}}&{\frac{{19}}{8}}\\0&0&0&6&0\\0&0&0&0&{ - 12}\end{array}} \right]\)and after deleting column 4,you get matrix \(B' = \left[ {\begin{array}{*{20}{c}}8&{11}&{ - 6}&{ - 7}\\0&{\frac{{13}}{8}}&{ - \frac{1}{4}}&{\frac{1}{8}}\\0&0&0&6\\0&0&0&0\end{array}} \right]\).

\(A'\)to\(B'\)is reduced by the same sequence of row operations that reduces A to B. Since\(B'\)is in the echelon form, each row provides a pivot position for\(A'\).

Hence,\(A'\)columns of the matrix are in span\({R^4}\).

Instead of column 3, it is feasible to delete column 2 of A. Only one column, however, can be eliminated. If two or more columns in column A are removed, the resulting matrix will have fewer than four columns and thus fewer than four pivot places. In this situation, not every row could have a pivot position, and the matrix's columns wouldnot cover \({R^4}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 13 and 14, determine if \(b\) is a linear combination of the vectors formed from the columns of the matrix \(A\).

13. \(A = \left[ {\begin{array}{*{20}{c}}1&{ - 4}&2\\0&3&5\\{ - 2}&8&{ - 4}\end{array}} \right],{\mathop{\rm b}\nolimits} = \left[ {\begin{array}{*{20}{c}}3\\{ - 7}\\{ - 3}\end{array}} \right]\)

Determine h and k such that the solution set of the system (i) is empty, (ii) contains a unique solution, and (iii) contains infinitely many solutions.

a. \({x_1} + 3{x_2} = k\)

\(4{x_1} + h{x_2} = 8\)

b. \( - 2{x_1} + h{x_2} = 1\)

\(6{x_1} + k{x_2} = - 2\)

Suppose an experiment leads to the following system of equations:

\(\begin{aligned}{c}{\bf{4}}.{\bf{5}}{x_{\bf{1}}} + {\bf{3}}.{\bf{1}}{x_{\bf{2}}} = {\bf{19}}.{\bf{249}}\\1.6{x_{\bf{1}}} + 1.1{x_{\bf{2}}} = 6.843\end{aligned}\) (3)

  1. Solve system (3), and then solve system (4), below, in which the data on the right have been rounded to two decimal places. In each case, find the exactsolution.

\(\begin{aligned}{c}{\bf{4}}.{\bf{5}}{x_{\bf{1}}} + {\bf{3}}.{\bf{1}}{x_{\bf{2}}} = {\bf{19}}.{\bf{25}}\\1.6{x_{\bf{1}}} + 1.1{x_{\bf{2}}} = 6.8{\bf{4}}\end{aligned}\) (4)

  1. The entries in (4) differ from those in (3) by less than .05%. Find the percentage error when using the solution of (4) as an approximation for the solution of (3).
  1. Use your matrix program to produce the condition number of the coefficient matrix in (3).

Question:Let A be the n x n matrix with 0's on the main diagonal, and 1's everywhere else. For an arbitrary vector bin n, solve the linear system Ax=b, expressing the components x1,.......,xnof xin terms of the components of b. See Exercise 69 for the case n=3 .

In Exercises 5, write a system of equations that is equivalent to the given vector equation.

5. \({x_1}\left[ {\begin{array}{*{20}{c}}6\\{ - 1}\\5\end{array}} \right] + {x_2}\left[ {\begin{array}{*{20}{c}}{ - 3}\\4\\0\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1\\{ - 7}\\{ - 5}\end{array}} \right]\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free