Repeat Exercise 43 with the matrices A and B from Exercise 42. Then give an explanation for what you discover, assuming that B was constructed as specified.

Short Answer

Expert verified

Every linearly dependent column in A is in the set spanned by the columns of B because there are four pivot elements.

Step by step solution

01

Identify pivot position

To identify the pivot and the pivot position, observe the matrix’s leftmost column (nonzero column), that is, the pivot column. At the top of this column, 12 is the pivot.

02

Apply row operation

Consider matrix \(A = \left[ {\begin{array}{*{20}{c}}{12}&{10}&{ - 6}&{ - 3}&7&{10}\\{ - 7}&{ - 6}&4&7&{ - 9}&5\\9&9&{ - 9}&{ - 5}&5&{ - 1}\\{ - 4}&{ - 3}&1&6&{ - 8}&9\\8&7&{ - 5}&{ - 9}&{11}&{ - 8}\end{array}} \right]\).

Use code in the MATLAB to obtain the row-reduced echelon form as shown below:

\(\begin{array}{l} > > {\rm{ A }} = {\rm{ }}\left[ \begin{array}{l}12{\rm{ }}10{\rm{ }} - 6{\rm{ }} - 3{\rm{ }}7{\rm{ }}10;{\rm{ }} - 7 - 6{\rm{ }}4{\rm{ }}7{\rm{ }} - 9{\rm{ }}5;{\rm{ }}9{\rm{ }}9{\rm{ }} - 9{\rm{ }} - 5{\rm{ }}5{\rm{ }} - 1;{\rm{ }}\\ - 4{\rm{ }} - 3{\rm{ }}1{\rm{ }}6{\rm{ }} - 8{\rm{ }}9;{\rm{ }}8{\rm{ }}7{\rm{ }} - 5{\rm{ }} - 9{\rm{ }}11{\rm{ }} - 8\end{array} \right];\\ > > {\rm{ U}} = {\rm{rref}}\left( {\rm{A}} \right)\end{array}\)

\(\left[ {\begin{array}{*{20}{c}}{12}&{10}&{ - 6}&{ - 3}&7&{10}\\{ - 7}&{ - 6}&4&7&{ - 9}&5\\9&9&{ - 9}&{ - 5}&5&{ - 1}\\{ - 4}&{ - 3}&1&6&{ - 8}&9\\8&7&{ - 5}&{ - 9}&{11}&{ - 8}\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&0&2&0&2&0\\0&1&{ - 3}&0&{ - 2}&0\\0&0&0&1&{ - 1}&0\\0&0&0&0&0&1\\0&0&0&0&0&0\end{array}} \right]\)

03

Mark the pivot positions in the matrix

Mark the nonzero leading entries in columns 1, 2, 4, and 6.

Now, mark the pivot columns of the given matrix as shown below:

04

Construct matrix B

Construct matrix B by using 1, 2, 4, and 6 pivot columns of the matrixas shown below:

\(B = \left[ {\begin{array}{*{20}{c}}{12}&{10}&{ - 3}&{10}\\{ - 7}&{ - 6}&7&5\\9&9&{ - 5}&{ - 1}\\{ - 4}&{ - 3}&6&9\\8&7&{ - 9}&{ - 8}\end{array}} \right]\)

05

Choose one dependent vector and obtain the augmented matrix

Let one of the dependent vectors be\({\bf{v}} = \left[ {\begin{array}{*{20}{c}}{ - 14}\\9\\{ - 18}\\1\\{ - 11}\end{array}} \right]\).

Obtain the augmented matrix\(\left[ {\begin{array}{*{20}{c}}B&{\bf{v}}\end{array}} \right]\)as shown below:

\(\left[ {\begin{array}{*{20}{c}}{12}&{10}&{ - 3}&{10}&{ - 14}\\{ - 7}&{ - 6}&7&5&9\\9&9&{ - 5}&{ - 1}&{ - 18}\\{ - 4}&{ - 3}&6&9&1\\8&7&{ - 9}&{ - 8}&{ - 11}\end{array}} \right]\)

Use code in the MATLAB to obtain the row-reduced echelon form as shown below:

\(\begin{array}{l} > > {\rm{ A }} = {\rm{ }}\left[ \begin{array}{l}12{\rm{ }}10{\rm{ }} - 3{\rm{ 10 }} - {\rm{14}};{\rm{ }} - 7 - 6{\rm{ 7 5 9}};{\rm{ }}9{\rm{ }}9{\rm{ }} - 5{\rm{ - 1 }} - {\rm{18}};{\rm{ }}\\ - 4{\rm{ }} - 3{\rm{ 6 9 1}};{\rm{ }}8{\rm{ }}7{\rm{ }} - 9{\rm{ }} - {\rm{8 }} - 11\end{array} \right];\\ > > {\rm{ U}} = {\rm{rref}}\left( {\rm{A}} \right)\end{array}\)

\(\left[ {\begin{array}{*{20}{c}}{12}&{10}&{ - 3}&{10}&{ - 14}\\{ - 7}&{ - 6}&7&5&9\\9&9&{ - 5}&{ - 1}&{ - 18}\\{ - 4}&{ - 3}&6&9&1\\8&7&{ - 9}&{ - 8}&{ - 11}\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&0&0&0&1\\0&1&0&0&{ - 2}\\0&0&1&0&1\\0&0&0&1&0\\0&0&0&0&0\end{array}} \right]\)

Thus, every linearly dependent column in A is in the set spanned by the columns of B because there are four pivot elements.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Give a geometric description of span \(\left\{ {{v_1},{v_2}} \right\}\) for the vectors \({{\mathop{\rm v}\nolimits} _1} = \left[ {\begin{array}{*{20}{c}}8\\2\\{ - 6}\end{array}} \right]\) and \({{\mathop{\rm v}\nolimits} _2} = \left[ {\begin{array}{*{20}{c}}{12}\\3\\{ - 9}\end{array}} \right]\).

Suppose \(a,b,c,\) and \(d\) are constants such that \(a\) is not zero and the system below is consistent for all possible values of \(f\) and \(g\). What can you say about the numbers \(a,b,c,\) and \(d\)? Justify your answer.

28. \(\begin{array}{l}a{x_1} + b{x_2} = f\\c{x_1} + d{x_2} = g\end{array}\)

In Exercise 1, compute \(u + v\) and \(u - 2v\).

  1. \(u = \left[ {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right]\), \(v = \left[ {\begin{array}{*{20}{c}}{ - 3}\\{ - 1}\end{array}} \right]\).

Suppose \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}\) are distinct points on one line in \({\mathbb{R}^3}\). The line need not pass through the origin. Show that \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}} \right\}\) is linearly dependent.

In Exercises 23 and 24, key statements from this section are either quoted directly, restated slightly (but still true), or altered in some way that makes them false in some cases. Mark each statement True or False, and justify your answer.(If true, give the approximate location where a similar statement appears, or refer to a definition or theorem. If false, give the location of a statement that has been quoted or used incorrectly, or cite an example that shows the statement is not true in all cases.) Similar true/false questions will appear in many sections of the text.

24.

a. Elementary row operations on an augmented matrix never change the solution set of the associated linear system.

b. Two matrices are row equivalent if they have the same number of rows.

c. An inconsistent system has more than one solution.

d. Two linear systems are equivalent if they have the same solution set.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free