Some matrix programs, such as MATLAB, have a command to create Hilbert matrices of various sizes. If possible, use an inverse command to compute the inverse of a twelfth-order or larger Hilbert matrix, A. Compute \(A{A^{ - 1}}\). Report what you find.

Short Answer

Expert verified

The output matrix is an identity matrix.

Step by step solution

01

Create a Hilbert matrix of large size

Use the MATLAB command to create theHilbert matrix of size\(12 \times 12\).

\( > > {\rm{A}} = {\rm{hilb}}\left( {12} \right)\)

\(\left( {\begin{aligned}{*{20}{c}}{1.000}&{0.500}&{0.333}&{0.250}&{0.200}&{0.167}&{0.143}&{0.125}&{0.111}&{0.100}&{0.091}&{0.083}\\{0.500}&{0.333}&{0.250}&{0.200}&{0.167}&{0.143}&{0.125}&{0.111}&{0.100}&{0.091}&{0.083}&{0.077}\\{0.333}&{0.250}&{0.200}&{0.167}&{0.143}&{0.125}&{0.111}&{0.100}&{0.091}&{0.083}&{0.077}&{0.071}\\{0.250}&{0.200}&{0.167}&{0.143}&{0.125}&{0.111}&{0.100}&{0.091}&{0.083}&{0.077}&{0.071}&{0.067}\\{0.200}&{0.167}&{0.143}&{0.125}&{0.111}&{0.100}&{0.091}&{0.083}&{0.077}&{0.071}&{0.067}&{0.063}\\{0.167}&{0.143}&{0.125}&{0.111}&{0.100}&{0.091}&{0.083}&{0.077}&{0.071}&{0.067}&{0.063}&{0.059}\\{0.143}&{0.125}&{0.111}&{0.100}&{0.091}&{0.083}&{0.077}&{0.071}&{0.067}&{0.063}&{0.059}&{0.056}\\{0.125}&{0.111}&{0.100}&{0.091}&{0.083}&{0.077}&{0.071}&{0.067}&{0.063}&{0.059}&{0.056}&{0.053}\\{0.111}&{0.100}&{0.091}&{0.083}&{0.077}&{0.071}&{0.067}&{0.063}&{0.059}&{0.056}&{0.053}&{0.050}\\{0.100}&{0.091}&{0.083}&{0.077}&{0.071}&{0.067}&{0.063}&{0.059}&{0.056}&{0.053}&{0.050}&{0.048}\\{0.091}&{0.083}&{0.077}&{0.071}&{0.067}&{0.063}&{0.059}&{0.056}&{0.053}&{0.050}&{0.048}&{0.045}\\{0.083}&{0.077}&{0.071}&{0.067}&{0.063}&{0.059}&{0.056}&{0.053}&{0.050}&{0.048}&{0.045}&{0.043}\end{aligned}} \right)\)

02

Obtain the inverse of matrix A

Compute theinverse of matrix A by using the MATLAB command shown below:

\( > > B = {\rm{A}}\^ - 1\)

\(\left( {\begin{aligned}{*{20}{c}}{1.41e + 02}&{ - 9.93e + 05}&{2.29e + 05}&{ - 2.54e + 06}&{1.61e + 07}&{ - 6.35e + 07}&{1.62e + 08}\\{ - 9.93e + 03}&{9.35e + 05}&{ - 2.43e + 07}&{2.89e + 08}&{ - 1.91e + 09}&{7.76e + 09}&{ - 2.03e + 10}\\{2.29e + 05}&{ - 2.43e + 07}&{6.75e + 08}&{ - 8.38e + 09}&{5.72e + 10}&{ - 2.37e + 11}&{6.29e + 11}\\{ - 2.54e + 06}&{2.89e + 08}&{ - 8.38e + 09}&{1.07e + 11}&{ - 7.48e + 11}&{3.15e + 12}&{ - 8.48e + 12}\\{1.61e + 07}&{ - 1.91e + 09}&{5.72e + 10}&{ - 7.48e + 11}&{5.30e + 12}&{ - 2.27e + 13}&{6.16e + 13}\\{ - 6.35e + 07}&{7.76e + 09}&{ - 2.37e + 11}&{3.15e + 12}&{ - 2.27e + 13}&{6.16e + 13}&{ - 2.69e + 14}\\{1.62e + 08}&{ - 2.03e + 10}&{6.29e + 11}&{ - 8.48e + 12}&{6.16e + 13}&{ - 2.69e + 14}&{7.44e + 14}\\{ - 2.73e + 08}&{3.47e + 10}&{ - 1.09e + 12}&{1.49e + 13}&{ - 1.09e + 14}&{4.80e + 14}&{ - 1.34e + 15}\\{3.02e + 08}&{ - 3.89e + 10}&{1.24e + 12}&{ - 1.70e + 13}&{1.26e + 14}&{ - 5.57e + 14}&{1.56e + 15}\\{ - 2.10e + 08}&{2.74e + 10}&{ - 8.81e + 11}&{1.22e + 13}&{ - 9.08e + 13}&{4.04e + 14}&{ - 1.14e + 15}\\{8.83e + 07}&{ - 1.10e + 10}&{3.57e + 11}&{ - 4.98e + 12}&{3.72e + 13}&{ - 1.66e + 14}&{4.70e + 14}\\{ - 1.45e + 07}&{1.93e + 09}&{ - 6.29e + 10}&{8.82e + 11}&{ - 6.63e + 12}&{2.98e + 13}&{ - 8.44e + 13}\end{aligned}} \right.\)

\(\left. {\begin{aligned}{*{20}{c}}{ - 2.73e + 08}&{3.02e + 08}&{ - 2.10e + 08}&{8.38e + 07}&{ - 1.45e + 07}\\{3.47e + 10}&{ - 3.89e + 10}&{ - 2.74e + 10}&{ - 1.10e + 10}&{1.93e + 09}\\{ - 1.09e + 12}&{1.24e + 12}&{ - 8.81e + 11}&{3.57e + 11}&{ - 6.29e + 10}\\{1.49e + 13}&{ - 1.70e + 13}&{1.22e + 13}&{ - 4.89e + 12}&{8.82e + 11}\\{ - 1.09e + 14}&{1.26e + 14}&{ - 9.08e + 13}&{3.72e + 13}&{ - 6.63e + 12}\\{4.80e + 14}&{ - 5.57e + 14}&{4.04e + 14}&{ - 1.66e + 14}&{2.98e + 13}\\{ - 1.34e + 15}&{1.56e + 15}&{ - 1.14e + 15}&{4.70e + 14}&{ - 8.44e + 13}\\{2.42e + 15}&{ - 2.84e + 15}&{2.80e + 15}&{ - 8.62e + 14}&{1.55e + 14}\\{ - 2.84e + 15}&{3.34e + 15}&{ - 2.45e + 15}&{1.02e + 15}&{ - 1.85e + 14}\\{2.08e + 15}&{ - 2.45e + 15}&{1.81e + 15}&{ - 7.56e + 14}&{1.37e + 14}\\{ - 8.62e + 14}&{1.02e + 15}&{ - 7.56e + 14}&{3.17e + 14}&{ - 5.75e + 13}\\{1.55e + 14}&{ - 1.85e + 14}&{1.37e + 14}&{ - 5.75e + 13}&{1.05e + 13}\end{aligned}} \right)\)

03

Obtain the product of the matrix and its inverse

Compute matrix C by using the MATLAB command shown below:

\( > > C = {\rm{A}}*{\rm{B}}\)

\(\left( {\begin{aligned}{*{20}{c}}{1.000}&{0.000}&{0.000}&{ - 0.001}&{0.001}&{0.006}&{ - 0.010}&{ - 0.019}&{ - 0.054}&{0.000}&{0.007}&{ - 0.001}\\{ - 0.005}&{1.000}&{0.000}&{0.000}&{0.002}&{0.000}&{0.020}&{ - 0.052}&{0.025}&{ - 0.019}&{0.003}&{ - 0.004}\\{ - 0.006}&{0.003}&{1.000}&{0.000}&{0.002}&{ - 0.002}&{0.023}&{ - 0.042}&{0.041}&{ - 0.036}&{0.007}&{ - 0.003}\\{ - 0.007}&{0.004}&{ - 0.001}&{1.000}&{0.002}&{ - 0.003}&{0.015}&{ - 0.035}&{0.049}&{ - 0.047}&{0.003}&{ - 0.003}\\{ - 0.007}&{0.006}&{ - 0.001}&{0.000}&{1.003}&{0.000}&{0.001}&{ - 0.029}&{0.027}&{ - 0.021}&{0.006}&{ - 0.002}\\{ - 0.007}&{0.006}&{ - 0.001}&{ - 0.001}&{0.002}&{0.997}&{0.020}&{ - 0.036}&{0.047}&{ - 0.036}&{0.010}&{ - 0.003}\\{ - 0.007}&{0.006}&{ - 0.001}&{ - 0.002}&{0.002}&{ - 0.004}&{1.012}&{ - 0.040}&{0.047}&{ - 0.034}&{0.010}&{ - 0.002}\\{ - 0.006}&{0.007}&{0.000}&{ - 0.003}&{0.002}&{ - 0.006}&{0.016}&{0.948}&{0.050}&{ - 0.040}&{0.015}&{ - 0.003}\\{ - 0.006}&{0.007}&{0.000}&{ - 0.003}&{0.001}&{0.005}&{ - 0.011}&{0.012}&{1.012}&{ - 0.001}&{ - 0.001}&{ - 0.001}\\{ - 0.006}&{0.006}&{0.000}&{ - 0.004}&{0.003}&{ - 0.002}&{0.005}&{ - 0.031}&{0.049}&{0.975}&{0.13}&{ - 0.002}\\{ - 0.006}&{0.006}&{0.001}&{ - 0.004}&{0.000}&{0.009}&{ - 0.022}&{0.009}&{ - 0.033}&{0.025}&{0.989}&{0.002}\\{ - 0.006}&{0.006}&{0.001}&{ - 0.005}&{0.002}&{0.001}&{0.006}&{ - 0.018}&{0.025}&{ - 0.018}&{0.002}&{0.999}\end{aligned}} \right)\)

Thus, the resultant matrix is an identity matrix.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let a and b represent real numbers. Describe the possible solution sets of the (linear) equation \(ax = b\). (Hint:The number of solutions depends upon a and b.)

Find the elementary row operation that transforms the first matrix into the second, and then find the reverse row operation that transforms the second matrix into the first.

30.\(\left[ {\begin{array}{*{20}{c}}1&3&{ - 4}\\0&{ - 2}&6\\0&{ - 5}&9\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}1&3&{ - 4}\\0&1&{ - 3}\\0&{ - 5}&9\end{array}} \right]\)

Question: Determine whether the statements that follow are true or false, and justify your answer.

16: There exists a 2x2 matrix such that

A[11]=[12]andA[22]=[21].

Write the reduced echelon form of a \(3 \times 3\) matrix A such that the first two columns of Aare pivot columns and

\(A = \left( {\begin{aligned}{*{20}{c}}3\\{ - 2}\\1\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}0\\0\\0\end{aligned}} \right)\).

Suppose Tand Ssatisfy the invertibility equations (1) and (2), where T is a linear transformation. Show directly that Sis a linear transformation. (Hint: Given u, v in \({\mathbb{R}^n}\), let \({\mathop{\rm x}\nolimits} = S\left( {\mathop{\rm u}\nolimits} \right),{\mathop{\rm y}\nolimits} = S\left( {\mathop{\rm v}\nolimits} \right)\). Then \(T\left( {\mathop{\rm x}\nolimits} \right) = {\mathop{\rm u}\nolimits} \), \(T\left( {\mathop{\rm y}\nolimits} \right) = {\mathop{\rm v}\nolimits} \). Why? Apply Sto both sides of the equation \(T\left( {\mathop{\rm x}\nolimits} \right) + T\left( {\mathop{\rm y}\nolimits} \right) = T\left( {{\mathop{\rm x}\nolimits} + y} \right)\). Also, consider \(T\left( {cx} \right) = cT\left( x \right)\).)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free