Chapter 1: Q5E (page 1)
In Exercises 3–6, with T defined by \(T\left( {\bf{x}} \right) = A{\bf{x}}\), find a vector x whose image under T is b, and determine whether x is unique.
5. \(A = \left[ {\begin{array}{*{20}{c}}1&{ - 5}&{ - 7}\\{ - 3}&7&5\end{array}} \right]\), \({\bf{b}} = \left[ {\begin{array}{*{20}{c}}{ - 2}\\{ - 2}\end{array}} \right]\)
Short Answer
Vector \({\bf{x}} = \left[ {\begin{array}{*{20}{c}}3\\1\\0\end{array}} \right] + {x_3}\left[ {\begin{array}{*{20}{c}}{ - 3}\\{ - 2}\\1\end{array}} \right]\), and the solution is not unique.