In Exercises 5–8, use the definition ofAx to write the matrix

equation as a vector equation, or vice versa.

5. \(\left[ {\begin{array}{*{20}{c}}5&1&{ - 8}&4\\{ - 2}&{ - 7}&3&{ - 5}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}5\\{ - 1}\\3\\{ - 2}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ - 8}\\{16}\end{array}} \right]\)

Short Answer

Expert verified

The matrix equation as a vector equation is\(5 \cdot \left[ {\begin{array}{*{20}{c}}5\\{ - 2}\end{array}} \right] - 1 \cdot \left[ {\begin{array}{*{20}{c}}1\\{ - 7}\end{array}} \right] + 3 \cdot \left[ {\begin{array}{*{20}{c}}{ - 8}\\3\end{array}} \right] - 2 \cdot \left[ {\begin{array}{*{20}{c}}4\\{ - 5}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ - 8}\\{16}\end{array}} \right]\).

Step by step solution

01

Write the definition of \(A{\bf{x}}\)

It is known that the column of matrix \(A\) is represented as \(\left[ {\begin{array}{*{20}{c}}{{a_1}}&{{a_2}}&{ \cdot \cdot \cdot }&{{a_n}}\end{array}} \right]\), and vector x is represented as \(\left[ {\begin{array}{*{20}{c}}{{x_1}}\\ \vdots \\{{x_n}}\end{array}} \right]\).

According to the definition, the weights in a linear combination of matrix A columns are represented by the entries in vector x.

The matrix equation as a vector equation can be written as shown below:

\(\begin{array}{c}A{\bf{x}} = \left[ {\begin{array}{*{20}{c}}{{a_1}}&{{a_2}}&{ \cdot \cdot \cdot }&{{a_n}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\ \vdots \\{{x_n}}\end{array}} \right]\\b = {x_1}{a_1} + {x_2}{a_2} + \cdots + {x_n}{a_n}\end{array}\)

The number of columns in matrix \(A\) should be equal to the number of entries in vector x so that \(A{\bf{x}}\) can be defined.

02

Write matrix A and vector x

Consider the equation \(\left[ {\begin{array}{*{20}{c}}5&1&{ - 8}&4\\{ - 2}&{ - 7}&3&{ - 5}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}5\\{ - 1}\\3\\{ - 2}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ - 8}\\{16}\end{array}} \right]\).

Here, \(A = \left[ {\begin{array}{*{20}{c}}5&1&{ - 8}&4\\{ - 2}&{ - 7}&3&{ - 5}\end{array}} \right]\), \({\bf{x}} = \left[ {\begin{array}{*{20}{c}}5\\{ - 1}\\3\\{ - 2}\end{array}} \right]\), and \(b = \left[ {\begin{array}{*{20}{c}}{ - 8}\\{16}\end{array}} \right]\).

03

Write matrix A columns and vector x entries

Here, \({{\bf{a}}_1} = \left[ {\begin{array}{*{20}{c}}5\\{ - 2}\end{array}} \right]\), \({{\bf{a}}_2} = \left[ {\begin{array}{*{20}{c}}1\\{ - 7}\end{array}} \right]\), \({{\bf{a}}_3} = \left[ {\begin{array}{*{20}{c}}{ - 8}\\3\end{array}} \right]\), \({{\bf{a}}_4} = \left[ {\begin{array}{*{20}{c}}4\\{ - 5}\end{array}} \right]\), \({x_1} = 5\), \({x_2} = - 1\), \({x_3} = 3\), and \({x_4} = - 2\).

04

Use the definition to write the matrix equation as a vector equation

Write the matrix equation \(\left[ {\begin{array}{*{20}{c}}5&1&{ - 8}&4\\{ - 2}&{ - 7}&3&{ - 5}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}5\\{ - 1}\\3\\{ - 2}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ - 8}\\{16}\end{array}} \right]\) as a vector equationby using the definition as shown below:

\(\begin{array}{c}\left[ {\begin{array}{*{20}{c}}5&1&{ - 8}&4\\{ - 2}&{ - 7}&3&{ - 5}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}5\\{ - 1}\\3\\{ - 2}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ - 8}\\{16}\end{array}} \right]\\5 \cdot \left[ {\begin{array}{*{20}{c}}5\\{ - 2}\end{array}} \right] - 1 \cdot \left[ {\begin{array}{*{20}{c}}1\\{ - 7}\end{array}} \right] + 3 \cdot \left[ {\begin{array}{*{20}{c}}{ - 8}\\3\end{array}} \right] - 2 \cdot \left[ {\begin{array}{*{20}{c}}4\\{ - 5}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ - 8}\\{16}\end{array}} \right]\end{array}\)

Thus, the matrix equation \(\left[ {\begin{array}{*{20}{c}}5&1&{ - 8}&4\\{ - 2}&{ - 7}&3&{ - 5}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}5\\{ - 1}\\3\\{ - 2}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ - 8}\\{16}\end{array}} \right]\)can be written as a vector equation as \(5 \cdot \left[ {\begin{array}{*{20}{c}}5\\{ - 2}\end{array}} \right] - 1 \cdot \left[ {\begin{array}{*{20}{c}}1\\{ - 7}\end{array}} \right] + 3 \cdot \left[ {\begin{array}{*{20}{c}}{ - 8}\\3\end{array}} \right] - 2 \cdot \left[ {\begin{array}{*{20}{c}}4\\{ - 5}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ - 8}\\{16}\end{array}} \right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free