Balance the chemical equations in Exercise 5-10 using the vector equation approach discussed in this section.

When solution of sodium phosphate and barium nitrate are mixed, the result is barium phosphate (as a precipitate) and sodium nitrate. The unbalanced equation is

\(N{a_3}P{O_4} + Ba{\left( {N{O_3}} \right)_2} \to B{a_3}{\left( {P{O_4}} \right)_2} + NaN{O_3}\)

[For each compound, construct a vector that lists the numbers of atoms of sodium (Na), Phosphorus, oxygen, barium nitrate correspond to (0, 0, 6, 1, 2).]

Short Answer

Expert verified

\(2{\rm{N}}{{\rm{a}}_3}{\rm{P}}{{\rm{O}}_4} + 3{\rm{Ba}}{\left( {{\rm{N}}{{\rm{O}}_3}} \right)_2} \to {\rm{B}}{{\rm{a}}_3}{\left( {{\rm{P}}{{\rm{O}}_4}} \right)_2} + 6{\rm{NaN}}{{\rm{O}}_3}\)

Step by step solution

01

Formation of vectors for the number of atoms of chemicals

The number of atoms of the chemical compound participating in the chemical reaction can be represented in the form ofvectors.

The following vectors represent the number of atoms of sodium (Na), phosphorus (P), oxygen (O), barium (B), and nitrogen (N).

\({\rm{N}}{{\rm{a}}_3}{\rm{P}}{{\rm{O}}_4}:\left[ {\begin{array}{*{20}{c}}3\\1\\4\\0\\0\end{array}} \right]\), \({\rm{Ba}}{\left( {{\rm{N}}{{\rm{O}}_3}} \right)_2}{\rm{:}}\left[ {\begin{array}{*{20}{c}}0\\0\\6\\1\\2\end{array}} \right]\), \({\rm{B}}{{\rm{a}}_3}{\left( {{\rm{P}}{{\rm{O}}_4}} \right)_2}:\left[ {\begin{array}{*{20}{c}}0\\2\\8\\3\\0\end{array}} \right]\) and \({\rm{NaN}}{{\rm{O}}_3}{\rm{:}}\left[ {\begin{array}{*{20}{c}}1\\0\\3\\0\\1\end{array}} \right]\)

02

Writing a balanced equation using the vectors of the number of atoms

In the chemical equation, using the vectors, the coefficients of the chemical compound can be determined.

Let the chemical reaction be:

\({x_1} \cdot {\rm{N}}{{\rm{a}}_3}{\rm{P}}{{\rm{O}}_4} + {x_2} \cdot {\rm{Ba}}{\left( {{\rm{N}}{{\rm{O}}_3}} \right)_2} \to {x_3} \cdot {\rm{B}}{{\rm{a}}_3}{\left( {{\rm{P}}{{\rm{O}}_4}} \right)_2} + {x_4} \cdot {\rm{NaN}}{{\rm{O}}_3}\)

The above reaction must satisfy the equation:

\({x_1}\left[ {\begin{array}{*{20}{c}}3\\1\\4\\0\\0\end{array}} \right] + {x_2}\left[ {\begin{array}{*{20}{c}}0\\0\\6\\1\\2\end{array}} \right] = {x_3}\left[ {\begin{array}{*{20}{c}}0\\2\\8\\3\\0\end{array}} \right] + {x_4}\left[ {\begin{array}{*{20}{c}}1\\0\\3\\0\\1\end{array}} \right]\)

03

Writing the augmented matrix using the vectors

The vector equation for the chemical compound is used to write the augmented matrix.

The augmented matrix for the equation \({x_1}\left[ {\begin{array}{*{20}{c}}3\\1\\4\\0\\0\end{array}} \right] + {x_2}\left[ {\begin{array}{*{20}{c}}0\\0\\6\\1\\2\end{array}} \right] = {x_3}\left[ {\begin{array}{*{20}{c}}0\\2\\8\\3\\0\end{array}} \right] + {x_4}\left[ {\begin{array}{*{20}{c}}1\\0\\3\\0\\1\end{array}} \right]\) is:

\(\left[ {\begin{array}{*{20}{c}}3&0&0&{ - 1}&0\\1&0&{ - 2}&0&0\\4&6&{ - 8}&{ - 3}&0\\0&1&{ - 3}&0&0\\0&2&0&{ - 1}&0\end{array}} \right]\)

04

Simplification of the augmented matrix using row operations

The row operations do not affect the linear system.

Exchange row 1 and row 2 in the augmented matrix.

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 2}&0&0\\3&0&0&{ - 1}&0\\4&6&{ - 8}&{ - 3}&0\\0&1&{ - 3}&0&0\\0&2&0&{ - 1}&0\end{array}} \right]\)

05

Simplification of the augmented matrix using row operations

For row 2, multiply row 1 with 3 and subtract it from row 1, i.e., \({R_2} \to {R_2} - 3{R_1}\).

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 2}&0&0\\{3 - 1\left( 3 \right)}&{0 - 0\left( 3 \right)}&{0 - 3\left( { - 2} \right)}&{ - 1 - 3\left( 0 \right)}&0\\4&6&{ - 8}&{ - 3}&0\\0&1&{ - 3}&0&0\\0&2&0&{ - 1}&0\end{array}} \right]\)

For row 3, multiply row 1 with 4 and subtract it from row 1, i.e.,\({R_3} \to {R_3} - 4{R_1}\).

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 2}&0&0\\0&0&6&{ - 1}&0\\{4 - 1\left( 4 \right)}&{6 - 0\left( 4 \right)}&{ - 8 + 2\left( 4 \right)}&{ - 3 - 0\left( 4 \right)}&0\\0&1&{ - 3}&0&0\\0&2&0&{ - 1}&0\end{array}} \right]\)

So, the augmented matrix after the row operation will become:

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 2}&0&0\\0&0&6&{ - 1}&0\\0&6&0&{ - 3}&0\\0&1&{ - 3}&0&0\\0&2&0&{ - 1}&0\end{array}} \right]\)

Exchange row 3 and row 4, i.e., \({R_2} \leftrightarrow {R_4}\).

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 2}&0&0\\0&1&{ - 3}&0&0\\0&6&0&{ - 3}&0\\0&0&6&{ - 1}&0\\0&2&0&{ - 1}&0\end{array}} \right]\)

06

Simplification of the augmented matrix using row operations

For row 3, multiply row 2 with 6 and subtract it from row 3, i.e., \({R_3} \to {R_3} - 6{R_2}\).

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 2}&0&0\\0&1&{ - 3}&0&0\\0&{6 - 1\left( 6 \right)}&{0 - 6\left( { - 3} \right)}&{ - 3 - 0}&0\\0&0&6&{ - 1}&0\\0&2&0&{ - 1}&0\end{array}} \right]\)

After the row operation, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 2}&0&0\\0&1&{ - 3}&0&0\\0&0&{18}&{ - 3}&0\\0&0&6&{ - 1}&0\\0&2&0&{ - 1}&0\end{array}} \right]\)

For row 5, multiply row 2 with 2 and subtract it from row 5, i.e., \({R_5} \to {R_5} - 2{R_2}\).

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 2}&0&0\\0&1&{ - 3}&0&0\\0&0&{18}&{ - 3}&0\\0&0&6&{ - 1}&0\\0&{2 - 1\left( 2 \right)}&{0 - 2\left( { - 3} \right)}&{ - 1 - 0\left( 2 \right)}&0\end{array}} \right]\)

After the row operation, the matrix will become.

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 2}&0&0\\0&1&{ - 3}&0&0\\0&0&{18}&{ - 3}&0\\0&0&6&{ - 1}&0\\0&0&6&{ - 1}&0\end{array}} \right]\)

07

Simplification of the augmented matrix using row operations

For row 5, subtract row 4 from row 5, i.e., \({R_4} \to {R_5} - {R_4}\).

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 2}&0&0\\0&1&{ - 3}&0&0\\0&0&{18}&{ - 3}&0\\0&0&6&{ - 1}&0\\0&0&{6 - 6}&{ - 1 - \left( { - 1} \right)}&0\end{array}} \right]\)

After the row operations, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 2}&0&0\\0&1&{ - 3}&0&0\\0&0&{18}&{ - 3}&0\\0&0&6&{ - 1}&0\\0&0&0&0&0\end{array}} \right]\)

For row 4, multiply row 4 with 3 and subtract it from row 4, i.e., \({R_4} \to 3{R_4} - {R_3}\).

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 2}&0&0\\0&1&{ - 3}&0&0\\0&0&{18}&{ - 3}&0\\0&0&{6\left( 3 \right) - 18}&{ - 1\left( 3 \right) + 3}&0\\0&0&0&0&0\end{array}} \right]\)

After the row operation, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 2}&0&0\\0&1&{ - 3}&0&0\\0&0&{18}&{ - 3}&0\\0&0&0&0&0\\0&0&0&0&0\end{array}} \right]\)

08

Simplification of the augmented matrix using row operations

Divide row 3 with 18, i.e., \({R_3} \to \frac{1}{{18}}{R_3}\).

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 2}&0&0\\0&1&{ - 3}&0&0\\0&0&{\frac{{18}}{{18}}}&{\frac{{ - 3}}{{18}}}&0\\0&0&0&0&0\\0&0&0&0&0\end{array}} \right]\)

After the row operation, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 2}&0&0\\0&1&{ - 3}&0&0\\0&0&1&{\frac{{ - 1}}{6}}&0\\0&0&0&0&0\\0&0&0&0&0\end{array}} \right]\)

For row 2, multiply row 3 with 3 and add it to row 2, i.e., \({R_2} \to {R_2} + 3{R_3}\).

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 2}&0&0\\0&1&0&{ - \frac{1}{2}}&0\\0&0&1&{\frac{{ - 1}}{6}}&0\\0&0&0&0&0\\0&0&0&0&0\end{array}} \right]\)

For row 1, multiply row 3 with 2 and add it to row 1, i.e., \({R_1} \to {R_1} + 2{R_3}\).

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 2 + 1\left( 2 \right)}&{0 + 2\left( { - \frac{1}{6}} \right)}&0\\0&1&0&{ - \frac{1}{2}}&0\\0&0&1&{\frac{{ - 1}}{6}}&0\\0&0&0&0&0\\0&0&0&0&0\end{array}} \right]\)

After the row operation, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&0&0&{ - \frac{1}{3}}&0\\0&1&0&{ - \frac{1}{2}}&0\\0&0&1&{\frac{{ - 1}}{6}}&0\\0&0&0&0&0\\0&0&0&0&0\end{array}} \right]\)

09

Finding the general solution

From the matrix \(\left[ {\begin{array}{*{20}{c}}1&0&0&{ - \frac{1}{3}}&0\\0&1&0&{ - \frac{1}{2}}&0\\0&0&1&{\frac{{ - 1}}{6}}&0\\0&0&0&0&0\\0&0&0&0&0\end{array}} \right]\), thegeneral solution can be written as:

\({x_1} = \frac{1}{3}{x_4}\), \({x_2} = \frac{1}{2}{x_4}\) and \({x_3} = \frac{1}{6}{x_4}\).

Let \({x_4} = 6\), then \({x_1} = 2\), \({x_2} = 3\), and \({x_3} = 1\)

So, the balanced reaction is:

\(2{\rm{N}}{{\rm{a}}_3}{\rm{P}}{{\rm{O}}_4} + 3{\rm{Ba}}{\left( {{\rm{N}}{{\rm{O}}_3}} \right)_2} \to {\rm{B}}{{\rm{a}}_3}{\left( {{\rm{P}}{{\rm{O}}_4}} \right)_2} + 6{\rm{NaN}}{{\rm{O}}_3}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 33 and 34, Tis a linear transformation from \({\mathbb{R}^2}\) into \({\mathbb{R}^2}\). Show that T is invertible and find a formula for \({T^{ - 1}}\).

34. \(T\left( {{x_1},{x_2}} \right) = \left( {6{x_1} - 8{x_2}, - 5{x_1} + 7{x_2}} \right)\)

Suppose an experiment leads to the following system of equations:

\(\begin{aligned}{c}{\bf{4}}.{\bf{5}}{x_{\bf{1}}} + {\bf{3}}.{\bf{1}}{x_{\bf{2}}} = {\bf{19}}.{\bf{249}}\\1.6{x_{\bf{1}}} + 1.1{x_{\bf{2}}} = 6.843\end{aligned}\) (3)

  1. Solve system (3), and then solve system (4), below, in which the data on the right have been rounded to two decimal places. In each case, find the exactsolution.

\(\begin{aligned}{c}{\bf{4}}.{\bf{5}}{x_{\bf{1}}} + {\bf{3}}.{\bf{1}}{x_{\bf{2}}} = {\bf{19}}.{\bf{25}}\\1.6{x_{\bf{1}}} + 1.1{x_{\bf{2}}} = 6.8{\bf{4}}\end{aligned}\) (4)

  1. The entries in (4) differ from those in (3) by less than .05%. Find the percentage error when using the solution of (4) as an approximation for the solution of (3).
  1. Use your matrix program to produce the condition number of the coefficient matrix in (3).

In Exercises 23 and 24, key statements from this section are either quoted directly, restated slightly (but still true), or altered in some way that makes them false in some cases. Mark each statement True or False, and justify your answer.(If true, give the approximate location where a similar statement appears, or refer to a definition or theorem. If false, give the location of a statement that has been quoted or used incorrectly, or cite an example that shows the statement is not true in all cases.) Similar true/false questions will appear in many sections of the text.

24.

a. Elementary row operations on an augmented matrix never change the solution set of the associated linear system.

b. Two matrices are row equivalent if they have the same number of rows.

c. An inconsistent system has more than one solution.

d. Two linear systems are equivalent if they have the same solution set.

Find the general solutions of the systems whose augmented matrices are given in Exercises 10.

10. \(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&{ - 1}&3\\3&{ - 6}&{ - 2}&2\end{array}} \right]\)

Question: If A is a non-zero matrix of the form,[a-bba] then the rank of A must be 2.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free