In Exercises 3–6, with T defined by \(T\left( {\bf{x}} \right) = A{\bf{x}}\), find a vector x whose image under T is b, and determine whether x is unique.

6. \(A = \left[ {\begin{array}{*{20}{c}}1&{ - 2}&1\\3&{ - 4}&5\\0&1&1\\{ - 3}&5&{ - 4}\end{array}} \right]\), \({\bf{b}} = \left[ {\begin{array}{*{20}{c}}1\\9\\3\\{ - 6}\end{array}} \right]\)

Short Answer

Expert verified

Vector \({\bf{x}} = \left[ {\begin{array}{*{20}{c}}7\\3\\0\end{array}} \right] + {x_3}\left[ {\begin{array}{*{20}{c}}{ - 3}\\{ - 1}\\1\end{array}} \right]\), and the solution is not unique.

Step by step solution

01

Write the concept for computing images under the transformation of vectors

The multiplication of matrix\(A\)of the order\(m \times n\)and vector x gives a new vector defined as\(A{\bf{x}}\)or b.

This concept is defined by the rule of transformation \(T\left( {\bf{x}} \right)\). The matrix transformation is denoted as \({\bf{x}}| \to A{\bf{x}}\).

02

Obtain the augmented matrix

Consider the transformation\(T\left( {\bf{x}} \right) = A{\bf{x}} = b\).

So,\(T\left( {\bf{x}} \right) = A{\bf{x}} = b\)can be represented as shown below:

\(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&1\\3&{ - 4}&5\\0&1&1\\{ - 3}&5&{ - 4}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1\\9\\3\\{ - 6}\end{array}} \right]\)

Write the augmented matrix\(\left[ {\begin{array}{*{20}{c}}A&{\bf{b}}\end{array}} \right]\)as shown below:

\(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&1&1\\3&{ - 4}&5&9\\0&1&1&3\\{ - 3}&5&{ - 4}&{ - 6}\end{array}} \right]\)

03

Convert the augmented matrix into the row-reduced echelon form

Use the \(3{x_1}\) term from the second equation to eliminate the \( - 3{x_1}\) term from the fourth equation. Add \(3\) times row two to row four.

\(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&1&1\\3&{ - 4}&5&9\\0&1&1&3\\0&1&1&3\end{array}} \right]\)

Use the \({x_1}\) term from the first equation to eliminate the \(3{x_1}\) term from the second equation. Add \( - 3\) times row one to row two.

\(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&1&1\\3&{ - 4}&5&9\\0&1&1&3\\0&1&1&3\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&{ - 2}&1&1\\0&2&2&6\\0&1&1&3\\0&1&1&3\end{array}} \right]\)

04

Convert the augmented matrix into the row-reduced echelon form

Multiply row two by \(\frac{1}{2}\).

\(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&1&1\\0&1&1&3\\0&1&1&3\\0&1&1&3\end{array}} \right]\)

Use the \({x_2}\) term from the second equation to eliminate the \({x_2}\) term from the third equation. Add \( - 1\) times row two to row three.

\(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&1&1\\0&1&1&3\\0&1&1&3\\0&1&1&3\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&{ - 2}&1&1\\0&1&1&3\\0&0&0&0\\0&1&1&3\end{array}} \right]\)

Use the \({x_2}\) term from the second equation to eliminate the \({x_2}\) term from the fourth equation. Add \( - 1\) times row two to row four.

\(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&1&1\\0&1&1&3\\0&0&0&0\\0&1&1&3\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&{ - 2}&1&1\\0&1&1&3\\0&0&0&0\\0&0&0&0\end{array}} \right]\)

Use the \({x_2}\) term from the second equation to eliminate the \( - 2{x_2}\) term from the first equation. Add 2 times row two to row one.

\(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&1&1\\0&1&1&3\\0&0&0&0\\0&0&0&0\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&0&3&7\\0&1&1&3\\0&0&0&0\\0&0&0&0\end{array}} \right]\)

05

Convert the matrix into an equation

To obtain the solution, convert the augmented matrix into the system of equations.

Write the obtained matrix, \(\left[ {\begin{array}{*{20}{c}}1&0&3&7\\0&1&1&3\\0&0&0&0\\0&0&0&0\end{array}} \right]\),in the equation notation.

\(\begin{array}{c}{x_1} + 0\left( {{x_2}} \right) + 3{x_3} = 7\\0\left( {{x_1}} \right) + {x_2} + {x_3} = 3\end{array}\)

06

Separate the variables into free and basic types

From the above equations, \({x_1}\) and \({x_2}\) are the pivot positions. So, \({x_1}\) and \({x_2}\) are basic variables, and \({x_3}\) is a free variable.

Let, \({x_3} = t\).

07

Obtain the values of basic variables in the parametric form

Substitute the value \({x_3} = t\) in the equation \({x_1} + 3{x_3} = 7\) to obtain the general solution.

\(\begin{aligned}{c}{x_1} + 3\left( t \right) &= 7\\{x_1} &= 7 - 3t\end{aligned}\)

Substitute the value \({x_3} = t\) in the equation \({x_2} + {x_3} = 3\) to obtain the general solution.

\(\begin{aligned}{c}{x_2} + \left( t \right) &= 3\\{x_2} &= 3 - t\end{aligned}\)

08

Write the solution in the parametric form

Obtain the vector in the parametric form by using \({x_1} = 7 - 3t\), \({x_2} = 3 - t\), and \({x_3} = t\).

\(\begin{aligned}{c}\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right] &= \left[ {\begin{array}{*{20}{c}}{7 - 3t}\\{3 - t}\\t\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}7\\3\\0\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}{ - 3t}\\{ - t}\\t\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}7\\3\\0\end{array}} \right] + t\left[ {\begin{array}{*{20}{c}}{ - 3}\\{ - 1}\\1\end{array}} \right]\end{aligned}\)

Or it can be written as \(\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}7\\3\\0\end{array}} \right] + t\left[ {\begin{array}{*{20}{c}}{ - 3}\\{ - 1}\\1\end{array}} \right]\).

So, the solution in the parametric vector form is \(\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}7\\3\\0\end{array}} \right] + {x_3}\left[ {\begin{array}{*{20}{c}}{ - 3}\\{ - 1}\\1\end{array}} \right]\).

This solution is not unique.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let a and b represent real numbers. Describe the possible solution sets of the (linear) equation \(ax = b\). (Hint:The number of solutions depends upon a and b.)

In Exercises 11 and 12, determine if \({\rm{b}}\) is a linear combination of \({{\mathop{\rm a}\nolimits} _1},{a_2}\) and \({a_3}\).

12.

Write the vector \(\left( {\begin{array}{*{20}{c}}5\\6\end{array}} \right)\) as the sum of two vectors, one on the line \(\left\{ {\left( {x,y} \right):y = {\bf{2}}x} \right\}\) and one on the line \(\left\{ {\left( {x,y} \right):y = x/{\bf{2}}} \right\}\).

In Exercises 23 and 24, key statements from this section are either quoted directly, restated slightly (but still true), or altered in some way that makes them false in some cases. Mark each statement True or False, and justify your answer.(If true, give the approximate location where a similar statement appears, or refer to a definition or theorem. If false, give the location of a statement that has been quoted or used incorrectly, or cite an example that shows the statement is not true in all cases.) Similar true/false questions will appear in many sections of the text.

24.

a. Elementary row operations on an augmented matrix never change the solution set of the associated linear system.

b. Two matrices are row equivalent if they have the same number of rows.

c. An inconsistent system has more than one solution.

d. Two linear systems are equivalent if they have the same solution set.

Suppose \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}\) are distinct points on one line in \({\mathbb{R}^3}\). The line need not pass through the origin. Show that \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}} \right\}\) is linearly dependent.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free