Chapter 1: Q7.1-31E (page 1)
Consider the dynamical system .
Sketch a phase portrait of this system for the given values of :
Short Answer
The sketch a phase portrait of this system for the given values ofis shown as below:
Chapter 1: Q7.1-31E (page 1)
Consider the dynamical system .
Sketch a phase portrait of this system for the given values of :
The sketch a phase portrait of this system for the given values ofis shown as below:
All the tools & learning materials you need for study success - in one app.
Get started for freeQuestion: There exists a 2x2 matrix such that.
Let \({{\mathop{\rm v}\nolimits} _1} = \left[ {\begin{array}{*{20}{c}}1\\0\\{ - 2}\end{array}} \right],{v_2} = \left[ {\begin{array}{*{20}{c}}{ - 3}\\1\\8\end{array}} \right],\) and \({\rm{y = }}\left[ {\begin{array}{*{20}{c}}h\\{ - 5}\\{ - 3}\end{array}} \right]\). For what values(s) of \(h\) is \(y\) in the plane generated by \({{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _2}\)
Use Theorem 7 in section 1.7 to explain why the columns of the matrix Aare linearly independent.
\(A = \left( {\begin{aligned}{*{20}{c}}1&0&0&0\\2&5&0&0\\3&6&8&0\\4&7&9&{10}\end{aligned}} \right)\)
Give a geometric description of span \(\left\{ {{v_1},{v_2}} \right\}\) for the vectors \({{\mathop{\rm v}\nolimits} _1} = \left[ {\begin{array}{*{20}{c}}8\\2\\{ - 6}\end{array}} \right]\) and \({{\mathop{\rm v}\nolimits} _2} = \left[ {\begin{array}{*{20}{c}}{12}\\3\\{ - 9}\end{array}} \right]\).
In Exercises 11 and 12, determine if \({\rm{b}}\) is a linear combination of \({{\mathop{\rm a}\nolimits} _1},{a_2}\) and \({a_3}\).
12.
What do you think about this solution?
We value your feedback to improve our textbook solutions.