Balance the chemical equations in Exercise 5-10 using the vector equation approach discussed in this section.

Alka-Seltzer contains sodium bicarbonate \(\left( {NaHC{O_3}} \right)\) and citric acid \(\left( {{H_3}{C_6}{H_5}{O_7}} \right)\). When a tablet is dissolved in water, the following reaction produces sodium citrate, water and carbon dioxide (gas):

\(NaHC{O_3} + {H_3}{C_6}{H_5}{O_7} \to N{a_3}{C_6}{H_5}{O_7} + {H_2}O + C{O_2}\)

Short Answer

Expert verified

\(3NaHC{O_3} + {H_3}{C_6}{H_5}{O_7} \to N{a_3}{C_6}{H_5}{O_7} + 3{H_2}O + 3C{O_2}\)

Step by step solution

01

Formation of vectors for the number of atoms of chemicals

The number of atoms of the chemical compound participating in the chemical reaction can be represented in the form of vectors.

The following vectors represent the number of atoms of sodium (Na), hydrogen (H), carbon (C), and oxygen (O) for the chemical compounds participating in the chemical reaction.

\({\rm{NaHC}}{{\rm{O}}_3}:\left[ {\begin{array}{*{20}{c}}1\\1\\1\\3\end{array}} \right]\), \({{\rm{H}}_3}{{\rm{C}}_6}{{\rm{H}}_5}{{\rm{O}}_7}{\rm{:}}\left[ {\begin{array}{*{20}{c}}0\\8\\6\\7\end{array}} \right]\), \({\rm{N}}{{\rm{a}}_3}{{\rm{C}}_6}{{\rm{H}}_5}{{\rm{O}}_7}:\left[ {\begin{array}{*{20}{c}}3\\5\\6\\7\end{array}} \right]\), \({{\rm{H}}_2}{\rm{O:}}\left[ {\begin{array}{*{20}{c}}0\\2\\0\\1\end{array}} \right]\)and \({\rm{C}}{{\rm{O}}_2}{\rm{:}}\left[ {\begin{array}{*{20}{c}}0\\0\\1\\2\end{array}} \right]\)

02

Writing a balanced equation using the vectors of the number of atoms

In the chemical equation, using the vectors, the coefficients of the chemical compound can be determined.

Let the chemical reaction be:

\({x_1} \cdot NaHC{O_3} + {x_2} \cdot {H_3}{C_6}{H_5}{O_7} \to {x_3} \cdot N{a_3}{C_6}{H_5}{O_7} + {x_4} \cdot {H_2}O + C{O_2}\)

The above reaction must satisfy the equation:

\({x_1}\left[ {\begin{array}{*{20}{c}}1\\1\\1\\3\end{array}} \right] + {x_2}\left[ {\begin{array}{*{20}{c}}0\\8\\6\\7\end{array}} \right] = {x_3}\left[ {\begin{array}{*{20}{c}}3\\5\\6\\7\end{array}} \right] + {x_4}\left[ {\begin{array}{*{20}{c}}0\\2\\0\\1\end{array}} \right] + {x_5}\left[ {\begin{array}{*{20}{c}}0\\0\\1\\2\end{array}} \right]\)

03

Writing the augmented matrix using the vectors

The vector equation for the chemical compound is used to write the augmented matrix.

The augmented matrix for the equation \({x_1}\left[ {\begin{array}{*{20}{c}}1\\1\\1\\3\end{array}} \right] + {x_2}\left[ {\begin{array}{*{20}{c}}0\\8\\6\\7\end{array}} \right] = {x_3}\left[ {\begin{array}{*{20}{c}}3\\5\\6\\7\end{array}} \right] + {x_4}\left[ {\begin{array}{*{20}{c}}0\\2\\0\\1\end{array}} \right] + {x_5}\left[ {\begin{array}{*{20}{c}}0\\0\\1\\2\end{array}} \right]\) is:

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 3}&0&0&0\\1&8&{ - 5}&{ - 2}&0&0\\1&6&{ - 6}&0&{ - 1}&0\\3&7&{ - 7}&{ - 1}&{ - 2}&0\end{array}} \right]\).

04

Simplification of the augmented matrix using row operations

The row operations do not affect thelinear system.

For row 4, multiply row 1 with 3 and subtract it from row 4, i.e., \({R_4} \to {R_4} - 3{R_1}\).

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 3}&0&0&0\\1&8&{ - 5}&{ - 2}&0&0\\1&6&{ - 6}&0&{ - 1}&0\\{3 - 1\left( 3 \right)}&{7 - 0\left( 3 \right)}&{ - 7 - 3\left( { - 3} \right)}&{ - 1 - 0\left( 3 \right)}&{ - 2 - 0\left( 3 \right)}&0\end{array}} \right]\)

After the row operation, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 3}&0&0&0\\1&8&{ - 5}&{ - 2}&0&0\\1&6&{ - 6}&0&{ - 1}&0\\0&7&2&{ - 1}&{ - 2}&0\end{array}} \right]\)

05

Simplification of the augmented matrix using row operations

For row 3, subtract row 1 from row 3, i.e., \({R_3} \to {R_3} - {R_1}\).

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 3}&0&0&0\\1&8&{ - 5}&{ - 2}&0&0\\{1 - 1}&{6 - 0}&{ - 6 + 3}&{0 - 0}&{ - 1 - 0}&0\\0&7&2&{ - 1}&{ - 2}&0\end{array}} \right]\)

After the row operation, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 3}&0&0&0\\1&8&{ - 5}&{ - 2}&0&0\\0&6&{ - 3}&0&{ - 1}&0\\0&7&2&{ - 1}&{ - 2}&0\end{array}} \right]\)

For row 2, subtract row 1 from row 2, i.e., \({R_2} \to {R_2} - {R_1}\).

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 3}&0&0&0\\{1 - 1}&{8 - 0}&{ - 5 + 3}&{ - 2 - 0}&{0 - 0}&{0 - 0}\\0&6&{ - 3}&0&{ - 1}&0\\0&7&2&{ - 1}&{ - 2}&0\end{array}} \right]\)

After the row operation, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 3}&0&0&0\\0&8&{ - 2}&{ - 2}&0&0\\0&6&{ - 3}&0&{ - 1}&0\\0&7&2&{ - 1}&{ - 2}&0\end{array}} \right]\)

06

Simplification of the augmented matrix using row operations

For row 2, divide row 2 by 2, i.e., \({R_2} \to \frac{1}{2}{R_2}\).

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 3}&0&0&0\\0&{\frac{8}{2}}&{\frac{{ - 2}}{2}}&{\frac{{ - 2}}{2}}&0&0\\0&6&{ - 3}&0&{ - 1}&0\\0&7&2&{ - 1}&{ - 2}&0\end{array}} \right]\)

After the row operation, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 3}&0&0&0\\0&4&{ - 1}&{ - 1}&0&0\\0&6&{ - 3}&0&{ - 1}&0\\0&7&2&{ - 1}&{ - 2}&0\end{array}} \right]\)

For row 3, divide row 3 by 3, i.e., \({R_3} \to \frac{1}{3}{R_3}\).

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 3}&0&0&0\\0&4&{ - 1}&{ - 1}&0&0\\0&{\frac{6}{3}}&{\frac{{ - 3}}{3}}&0&{ - \frac{1}{3}}&0\\0&7&2&{ - 1}&{ - 2}&0\end{array}} \right]\)

After the row operation, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 3}&0&0&0\\0&4&{ - 1}&{ - 1}&0&0\\0&2&{ - 1}&0&{ - \frac{1}{3}}&0\\0&7&2&{ - 1}&{ - 2}&0\end{array}} \right]\)

07

Simplification of the augmented matrix using row operations

For row 2, apply the row operation \({R_2} \to {R_4} - \left( {{R_3} + {R_2}} \right)\).

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 3}&0&0&0\\0&{7 - \left( {4 + 2} \right)}&{2 - \left( { - 1 - 1} \right)}&{ - 1 - \left( {0 - 1} \right)}&{ - 2 - \left( {0 - \frac{1}{3}} \right)}&0\\0&2&{ - 1}&0&{ - \frac{1}{3}}&0\\0&7&2&{ - 1}&{ - 2}&0\end{array}} \right]\)

After the row operation, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 3}&0&0&0\\0&1&4&0&{ - \frac{5}{3}}&0\\0&2&{ - 1}&0&{ - \frac{1}{3}}&0\\0&7&2&{ - 1}&{ - 2}&0\end{array}} \right]\)

08

Simplification of the augmented matrix using row operations

For row 3, multiply row 2 with 2 and subtract it from row 3.

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 3}&0&0&0\\0&1&4&0&{ - \frac{5}{3}}&0\\0&{2 - 1\left( 2 \right)}&{ - 1 - 2\left( 4 \right)}&0&{ - \frac{1}{3} + \frac{{10}}{3}}&0\\0&7&2&{ - 1}&{ - 2}&0\end{array}} \right]\)

After the row operation, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 3}&0&0&0\\0&1&4&0&{ - \frac{5}{3}}&0\\0&0&{ - 9}&0&3&0\\0&7&2&{ - 1}&{ - 2}&0\end{array}} \right]\)

For row 3, divide row 3 by \( - 9\) , i.e., \({R_3} \to - \frac{1}{9}{R_3}\).

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 3}&0&0&0\\0&1&4&0&{ - \frac{5}{3}}&0\\0&0&1&0&{ - \frac{1}{3}}&0\\0&7&2&{ - 1}&{ - 2}&0\end{array}} \right]\)

09

Simplification of the augmented matrix using row operations

For row 2, multiply row 3 with 4 and subtract it from row 2, i.e., \({R_2} \to {R_2} - 4{R_3}\).

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 3}&0&0&0\\0&{1 - 0}&{4 - 1\left( 4 \right)}&0&{ - \frac{5}{3} + \frac{4}{3}}&0\\0&0&1&0&{ - \frac{1}{3}}&0\\0&7&2&{ - 1}&{ - 2}&0\end{array}} \right]\)

After the row operation, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 3}&0&0&0\\0&1&0&0&{ - \frac{1}{3}}&0\\0&0&1&0&{ - \frac{1}{3}}&0\\0&7&2&{ - 1}&{ - 2}&0\end{array}} \right]\)

Apply row operation \({R_4} \to {R_4} - 7{R_1}\).

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 3}&0&0&0\\0&1&0&0&{ - \frac{1}{3}}&0\\0&0&1&0&{ - \frac{1}{3}}&0\\0&{7 - 1\left( 7 \right)}&{2 - 0}&{ - 1 - 0}&{ - 2 + \frac{7}{3}}&0\end{array}} \right]\)

After the row operation, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 3}&0&0&0\\0&1&0&0&{ - \frac{1}{3}}&0\\0&0&1&0&{ - \frac{1}{3}}&0\\0&0&2&{ - 1}&{\frac{1}{3}}&0\end{array}} \right]\)

Apply row operation \({R_4} \to {R_4} - 2{R_3}\).

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 3}&0&0&0\\0&1&0&0&{ - \frac{1}{3}}&0\\0&0&1&0&{ - \frac{1}{3}}&0\\0&0&{2 - 1\left( 2 \right)}&{ - 1 - 0}&{\frac{1}{3} + \frac{2}{3}}&0\end{array}} \right]\)

After the row operation, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 3}&0&0&0\\0&1&0&0&{ - \frac{1}{3}}&0\\0&0&1&0&{ - \frac{1}{3}}&0\\0&0&0&{ - 1}&1&0\end{array}} \right]\)

Apply row operation \({R_4} \to - {R_4}\) and \({R_1} \to {R_1} + 3{R_3}\).

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 3 + 3}&0&{0 - \frac{3}{3}}&0\\0&1&0&0&{ - \frac{1}{3}}&0\\0&0&1&0&{ - \frac{1}{3}}&0\\0&0&0&1&{ - 1}&0\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1&0&0&0&{ - 1}&0\\0&1&0&0&{ - \frac{1}{3}}&0\\0&0&1&0&{ - \frac{1}{3}}&0\\0&0&0&1&{ - 1}&0\end{array}} \right]\)

10

Find the general solution for the linear system

The general solution for the coefficients of the chemical reaction is:

\({x_1} = {x_5}\), \({x_2} = \frac{1}{3}{x_5}\), \({x_3} = \frac{1}{3}{x_5}\), \({x_4} = {x_5}\)

Let \({x_5} = 3\), then \({x_1} = 3\), \({x_2} = 1\), \({x_3} = 1\), and \({x_4} = 3\)

So, the balanced equation is:

\(3NaHC{O_3} + {H_3}{C_6}{H_5}{O_7} \to N{a_3}{C_6}{H_5}{O_7} + 3{H_2}O + 3C{O_2}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 10, write a vector equation that is equivalent tothe given system of equations.

10. \(4{x_1} + {x_2} + 3{x_3} = 9\)

\(\begin{array}{c}{x_1} - 7{x_2} - 2{x_3} = 2\\8{x_1} + 6{x_2} - 5{x_3} = 15\end{array}\)

In Exercises 23 and 24, key statements from this section are either quoted directly, restated slightly (but still true), or altered in some way that makes them false in some cases. Mark each statement True or False, and justify your answer.(If true, give the approximate location where a similar statement appears, or refer to a definition or theorem. If false, give the location of a statement that has been quoted or used incorrectly, or cite an example that shows the statement is not true in all cases.) Similar true/false questions will appear in many sections of the text.

24.

a. Elementary row operations on an augmented matrix never change the solution set of the associated linear system.

b. Two matrices are row equivalent if they have the same number of rows.

c. An inconsistent system has more than one solution.

d. Two linear systems are equivalent if they have the same solution set.

Let \({{\bf{a}}_1}\) \({{\bf{a}}_2}\), and b be the vectors in \({\mathbb{R}^{\bf{2}}}\) shown in the figure, and let \(A = \left( {\begin{aligned}{*{20}{c}}{{{\bf{a}}_1}}&{{{\bf{a}}_2}}\end{aligned}} \right)\). Does the equation \(A{\bf{x}} = {\bf{b}}\) have a solution? If so, is the solution unique? Explain.

Describe the possible echelon forms of the matrix A. Use the notation of Example 1 in Section 1.2.

a. A is a \({\bf{2}} \times {\bf{3}}\) matrix whose columns span \({\mathbb{R}^{\bf{2}}}\).

b. A is a \({\bf{3}} \times {\bf{3}}\) matrix whose columns span \({\mathbb{R}^{\bf{3}}}\).

In Exercises 13 and 14, determine if \({\mathop{\rm b}\nolimits} \) is a linear combination of the vectors formed from the columns of the matrix \(A\).

14. \(A = \left[ {\begin{array}{*{20}{c}}1&{ - 2}&{ - 6}\\0&3&7\\1&{ - 2}&5\end{array}} \right],{\mathop{\rm b}\nolimits} = \left[ {\begin{array}{*{20}{c}}{11}\\{ - 5}\\9\end{array}} \right]\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free