In Exercise 1-10, assume that \(T\) is a linear transformation. Find the standard matrix of \(T\).

\(T:{\mathbb{R}^2} \to {\mathbb{R}^2}\), first rotates points through \( - \frac{{3\pi }}{4}\) radian (clockwise) and then reflects points through the horizontal \({x_1}\)-axis. [Hint: \(T\left( {{e_1}} \right) = \left( { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right)\)]

Short Answer

Expert verified

\(\left[ {\begin{array}{*{20}{c}}{ - \frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\{\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\end{array}} \right]\)

Step by step solution

01

Find the value of \(T\) using linear transformation

Usinglinear transformation,

\(\begin{aligned} T &= T\left( {{x_1}{e_1} + {x_2}{e_2}} \right)\\ &= {x_1}T\left( {{e_1}} \right) + {x_2}T\left( {{e_2}} \right)\\ &= \left[ {\begin{array}{*{20}{c}}{T\left( {{e_1}} \right)}&{T\left( {{e_2}} \right)}\end{array}} \right]x\end{aligned}\)

02

Find the transformation \(T\left( {{e_1}} \right)\) 

When \({e_1}\) is rotated through \( - \frac{{3\pi }}{4}\) radian clockwise, then

\({e_1} \to \left[ {\begin{array}{*{20}{c}}{ - \frac{1}{{\sqrt 2 }}}\\{ - \frac{1}{{\sqrt 2 }}}\end{array}} \right]\).

And when reflected through the horizontal axis,

\({e_1} \to \left[ {\begin{array}{*{20}{c}}{ - \frac{1}{{\sqrt 2 }}}\\{ - \frac{1}{{\sqrt 2 }}}\end{array}} \right] \to \left[ {\begin{array}{*{20}{c}}{ - \frac{1}{{\sqrt 2 }}}\\{\frac{1}{{\sqrt 2 }}}\end{array}} \right]\).

03

Find the transformation matrix \(T\left( {{e_2}} \right)\)

When \({e_2}\) is rotated through \( - \frac{{3\pi }}{4}\) radian clockwise, then

\({e_2} \to \left[ {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 2 }}}\\{ - \frac{1}{{\sqrt 2 }}}\end{array}} \right]\).

And when reflected through the horizontal axis,

\({e_2} \to \left[ {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 2 }}}\\{ - \frac{1}{{\sqrt 2 }}}\end{array}} \right] \to \left[ {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 2 }}}\\{\frac{1}{{\sqrt 2 }}}\end{array}} \right]\).

04

Find the standard matrix \(T\) for linear transformation

By the equation \(T = \left[ {\begin{array}{*{20}{c}}{T\left( {{e_1}} \right)}&{T\left( {{e_2}} \right)}\end{array}} \right]x\),

\(T = \left[ {\begin{array}{*{20}{c}}{ - \frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\{\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\end{array}} \right]x\).

So, the linear transformation matrixis \(\left[ {\begin{array}{*{20}{c}}{ - \frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\\{\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\end{array}} \right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find the general solutions of the systems whose augmented matrices are given in Exercises 10.

10. \(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&{ - 1}&3\\3&{ - 6}&{ - 2}&2\end{array}} \right]\)

In Exercises 13 and 14, determine if \(b\) is a linear combination of the vectors formed from the columns of the matrix \(A\).

13. \(A = \left[ {\begin{array}{*{20}{c}}1&{ - 4}&2\\0&3&5\\{ - 2}&8&{ - 4}\end{array}} \right],{\mathop{\rm b}\nolimits} = \left[ {\begin{array}{*{20}{c}}3\\{ - 7}\\{ - 3}\end{array}} \right]\)

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be an invertible linear transformation. Explain why T is both one-to-one and onto \({\mathbb{R}^n}\). Use equations (1) and (2). Then give a second explanation using one or more theorems.

Solve each system in Exercises 1–4 by using elementary row operations on the equations or on the augmented matrix. Follow the systematic elimination procedure.

  1. \(\begin{aligned}{c}{x_1} + 5{x_2} = 7\\ - 2{x_1} - 7{x_2} = - 5\end{aligned}\)

A Givens rotation is a linear transformation from \({\mathbb{R}^{\bf{n}}}\) to \({\mathbb{R}^{\bf{n}}}\) used in computer programs to create a zero entry in a vector (usually a column of matrix). The standard matrix of a given rotations in \({\mathbb{R}^{\bf{2}}}\) has the form

\(\left( {\begin{aligned}{*{20}{c}}a&{ - b}\\b&a\end{aligned}} \right)\), \({a^2} + {b^2} = 1\)

Find \(a\) and \(b\) such that \(\left( {\begin{aligned}{*{20}{c}}4\\3\end{aligned}} \right)\) is rotated into \(\left( {\begin{aligned}{*{20}{c}}5\\0\end{aligned}} \right)\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free