Balance the chemical equations in Exercise 5-10 using the vector equation approach discussed in this section.\(\left( {KMn{O_4}} \right)\)

The following reaction between potassium permanganate and manganese sulfate in water produces manganese dioxide, potassium sulfate and sulfuric acid:

\(KMn{O_4} + MnS{O_4} + {H_2}O \to Mn{O_2} + {K_2}S{O_4} + {H_2}S{O_4}\)

[For each compound, construct a vector that lists the numbers of atoms of potassium (K), manganese, oxygen, sulfur and hydrogen.]

Short Answer

Expert verified

\(2{\rm{KMn}}{{\rm{O}}_4} + 3{\rm{MnS}}{{\rm{O}}_4} + 2{{\rm{H}}_2}{\rm{O}} \to 5{\rm{Mn}}{{\rm{O}}_2} + {{\rm{K}}_2}{\rm{S}}{{\rm{O}}_4} + 2{{\rm{H}}_2}{\rm{S}}{{\rm{O}}_4}\)

Step by step solution

01

Formation of vectors for the number of atoms of chemicals

The number of atoms of a chemical compound participating in the chemical reaction can be represented in the form of vectors.

The following vectors represent the number of atoms of potassium (K), manganese (Mn), oxygen (O), sulfur (S), and hydrogen (H) for the chemical compounds participating in the chemical reaction.

\({\rm{KMn}}{{\rm{O}}_4}:\left[ {\begin{array}{*{20}{c}}1\\1\\4\\0\\0\end{array}} \right]\), \({\rm{MnS}}{{\rm{O}}_4}{\rm{:}}\left[ {\begin{array}{*{20}{c}}0\\1\\4\\1\\0\end{array}} \right]\), \({{\rm{H}}_2}{\rm{O}}:\left[ {\begin{array}{*{20}{c}}0\\0\\1\\0\\2\end{array}} \right]\), \({\rm{Mn}}{{\rm{O}}_2}{\rm{:}}\left[ {\begin{array}{*{20}{c}}0\\1\\2\\0\\0\end{array}} \right]\), \({{\rm{K}}_2}{\rm{S}}{{\rm{O}}_4}{\rm{:}}\left[ {\begin{array}{*{20}{c}}2\\0\\4\\1\\0\end{array}} \right]\)and \({{\rm{H}}_2}{\rm{S}}{{\rm{O}}_4}{\rm{:}}\left[ {\begin{array}{*{20}{c}}0\\0\\4\\1\\2\end{array}} \right]\)

02

Writing a balanced equation using the vectors of the number of atoms

In the chemical equation, using the vectors, the coefficients of the chemical compound can be determined.

Let the chemical reaction be:

\({x_1} \cdot {\rm{KMn}}{{\rm{O}}_4} + {x_2} \cdot {\rm{MnS}}{{\rm{O}}_4} + {x_3} \cdot {{\rm{H}}_2}{\rm{O}} \to {x_4} \cdot {\rm{Mn}}{{\rm{O}}_2} + {x_5} \cdot {{\rm{K}}_2}{\rm{S}}{{\rm{O}}_4} + {x_6} \cdot {{\rm{H}}_2}{\rm{S}}{{\rm{O}}_4}\)

The above reaction must satisfy the equation:

\({x_1}\left[ {\begin{array}{*{20}{c}}1\\1\\4\\0\\0\end{array}} \right] + {x_2}\left[ {\begin{array}{*{20}{c}}0\\1\\4\\1\\0\end{array}} \right] + {x_3}\left[ {\begin{array}{*{20}{c}}0\\0\\1\\0\\2\end{array}} \right] = {x_4}\left[ {\begin{array}{*{20}{c}}0\\1\\2\\0\\0\end{array}} \right] + {x_5}\left[ {\begin{array}{*{20}{c}}2\\0\\4\\1\\0\end{array}} \right] + {x_6}\left[ {\begin{array}{*{20}{c}}0\\0\\4\\1\\2\end{array}} \right]\)

03

Writing the augmented matrix using the vectors

The vector equation for the chemical compound is used to write the augmented matrix.

The augmented matrixfor the equation \({x_1}\left[ {\begin{array}{*{20}{c}}1\\1\\4\\0\\0\end{array}} \right] + {x_2}\left[ {\begin{array}{*{20}{c}}0\\1\\4\\1\\0\end{array}} \right] + {x_3}\left[ {\begin{array}{*{20}{c}}0\\0\\1\\0\\2\end{array}} \right] = {x_4}\left[ {\begin{array}{*{20}{c}}0\\1\\2\\0\\0\end{array}} \right] + {x_5}\left[ {\begin{array}{*{20}{c}}2\\0\\4\\1\\0\end{array}} \right] + {x_6}\left[ {\begin{array}{*{20}{c}}0\\0\\4\\1\\2\end{array}} \right]\) is:

\(\left[ {\begin{array}{*{20}{c}}1&0&0&0&{ - 2}&0&0\\1&1&0&{ - 1}&0&0&0\\4&4&1&{ - 2}&{ - 4}&{ - 4}&0\\0&1&0&0&{ - 1}&{ - 1}&0\\0&0&2&0&0&{ - 2}&0\end{array}} \right]\)

04

Simplification of the augmented matrix using row operations

The row operations do not affect thelinear system.

For row 3, multiply row 1 with 4 and subtract it from row 4, i.e., \({R_4} \to {R_4} - 4{R_1}\).

\(\left[ {\begin{array}{*{20}{c}}1&0&0&0&{ - 2}&0&0\\1&1&0&{ - 1}&0&0&0\\{4 - 1\left( 4 \right)}&{4 - 0}&{1 - 0}&{ - 2 - 0}&{ - 4 - 4\left( { - 2} \right)}&{ - 4 - 0}&0\\0&1&0&0&{ - 1}&{ - 1}&0\\0&0&2&0&0&{ - 2}&0\end{array}} \right]\)

After row operation, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&0&0&0&{ - 2}&0&0\\1&1&0&{ - 1}&0&0&0\\0&4&1&{ - 2}&4&{ - 4}&0\\0&1&0&0&{ - 1}&{ - 1}&0\\0&0&2&0&0&{ - 2}&0\end{array}} \right]\)

For row 2, subtract row 1 from row 2, i.e., \({R_2} \to {R_2} - {R_1}\).

\(\left[ {\begin{array}{*{20}{c}}1&0&0&0&{ - 2}&0&0\\{1 - 1}&{1 - 0}&{0 - 0}&{ - 1 - 0}&{0 + 2}&{0 - 0}&0\\0&4&1&{ - 2}&4&{ - 4}&0\\0&1&0&0&{ - 1}&{ - 1}&0\\0&0&2&0&0&{ - 2}&0\end{array}} \right]\)

After the row operation, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&0&0&0&{ - 2}&0&0\\0&1&0&{ - 1}&2&0&0\\0&4&1&{ - 2}&4&{ - 4}&0\\0&1&0&0&{ - 1}&{ - 1}&0\\0&0&2&0&0&{ - 2}&0\end{array}} \right]\)

05

Simplification of the augmented matrix using row operations

For row 3, multiply row 2 with 4 and subtract it from row 3, i.e., \({R_3} \to {R_3} - 4{R_2}\).

\(\left[ {\begin{array}{*{20}{c}}1&0&0&0&{ - 2}&0&0\\0&1&0&{ - 1}&2&0&0\\0&{4 - 1\left( 4 \right)}&{1 - 0}&{ - 2 - 4\left( { - 1} \right)}&{4 - 2\left( 4 \right)}&{ - 4 - 0}&0\\0&1&0&0&{ - 1}&{ - 1}&0\\0&0&2&0&0&{ - 2}&0\end{array}} \right]\)

After row operations, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&0&0&0&{ - 2}&0&0\\0&1&0&{ - 1}&2&0&0\\0&0&1&2&{ - 4}&{ - 4}&0\\0&1&0&0&{ - 1}&{ - 1}&0\\0&0&2&0&0&{ - 2}&0\end{array}} \right]\)

For row 4, subtract row 2 from row 4, i.e., \({R_4} \to {R_4} - {R_2}\).

\(\left[ {\begin{array}{*{20}{c}}1&0&0&0&{ - 2}&0&0\\0&1&0&{ - 1}&2&0&0\\0&0&1&2&{ - 4}&{ - 4}&0\\0&{1 - 1}&{0 - 0}&{0 + 1}&{ - 1 - 2}&{ - 1 - 0}&{0 - 0}\\0&0&2&0&0&{ - 2}&0\end{array}} \right]\)

After the row operation, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&0&0&0&{ - 2}&0&0\\0&1&0&{ - 1}&2&0&0\\0&0&1&2&{ - 4}&{ - 4}&0\\0&0&0&1&{ - 3}&{ - 1}&0\\0&0&2&0&0&{ - 2}&0\end{array}} \right]\)

06

Simplification of the augmented matrix using row operations

For row 5, multiply row 3 with 2 and subtract it from row 5, i.e., \({R_5} \to {R_5} - 2{R_3}\).

\(\left[ {\begin{array}{*{20}{c}}1&0&0&0&{ - 2}&0&0\\0&1&0&{ - 1}&2&0&0\\0&0&1&2&{ - 4}&{ - 4}&0\\0&0&0&1&{ - 3}&{ - 1}&0\\0&0&{2 - 1\left( 2 \right)}&{0 - 2\left( 2 \right)}&{0 - 2\left( { - 4} \right)}&{ - 2 - 2\left( { - 4} \right)}&0\end{array}} \right]\)

After the row operation, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&0&0&0&{ - 2}&0&0\\0&1&0&{ - 1}&2&0&0\\0&0&1&2&{ - 4}&{ - 4}&0\\0&0&0&1&{ - 3}&{ - 1}&0\\0&0&0&{ - 4}&8&6&0\end{array}} \right]\)

For row 5, multiply row 4 with 4 and add to row 5, i.e., \({R_5} \to {R_5} + 4{R_4}\).

\(\left[ {\begin{array}{*{20}{c}}1&0&0&0&{ - 2}&0&0\\0&1&0&{ - 1}&2&0&0\\0&0&1&2&{ - 4}&{ - 4}&0\\0&0&0&1&{ - 3}&{ - 1}&0\\0&0&0&{ - 4 + 1\left( 4 \right)}&{8 + 4\left( { - 3} \right)}&{6 + 4\left( { - 1} \right)}&0\end{array}} \right]\)

After the row operation, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&0&0&0&{ - 2}&0&0\\0&1&0&{ - 1}&2&0&0\\0&0&1&2&{ - 4}&{ - 4}&0\\0&0&0&1&{ - 3}&{ - 1}&0\\0&0&0&0&{ - 4}&2&0\end{array}} \right]\)

Multiply row 5 with \( - \frac{1}{4}\) , i.e., \({R_5} \to - \frac{1}{4}{R_5}\).

\(\left[ {\begin{array}{*{20}{c}}1&0&0&0&{ - 2}&0&0\\0&1&0&{ - 1}&2&0&0\\0&0&1&2&{ - 4}&{ - 4}&0\\0&0&0&1&{ - 3}&{ - 1}&0\\0&0&0&0&1&{ - \frac{1}{2}}&0\end{array}} \right]\)

07

Simplification of the augmented matrix using row operations

For row 4, multiply row 5 with 3 and add it to row 4, i.e., \({R_4} \to 3{R_5} + {R_4}\).

\(\left[ {\begin{array}{*{20}{c}}1&0&0&0&{ - 2}&0&0\\0&1&0&{ - 1}&2&0&0\\0&0&1&2&{ - 4}&{ - 4}&0\\0&0&0&{1 + 0}&{ - 3 + 1\left( 3 \right)}&{ - 1 - 3\left( { - \frac{1}{2}} \right)}&0\\0&0&0&0&1&{ - \frac{1}{2}}&0\end{array}} \right]\)

After the row operation, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&0&0&0&{ - 2}&0&0\\0&1&0&{ - 1}&2&0&0\\0&0&1&2&{ - 4}&{ - 4}&0\\0&0&0&1&0&{ - \frac{5}{2}}&0\\0&0&0&0&1&{ - \frac{1}{2}}&0\end{array}} \right]\)

For row 3, multiply row 5 with 4 and add it to row 3, i.e., \({R_3} \to {R_3} + 4{R_5}\).

\(\left[ {\begin{array}{*{20}{c}}1&0&0&0&{ - 2}&0&0\\0&1&0&{ - 1}&2&0&0\\{0 + 0}&{0 + 0}&{1 + 0}&{2 + 0}&{ - 4 + 1\left( 4 \right)}&{ - 4 + 4\left( { - \frac{1}{2}} \right)}&0\\0&0&0&1&0&{ - \frac{5}{2}}&0\\0&0&0&0&1&{ - \frac{1}{2}}&0\end{array}} \right]\)

After the row operation, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&0&0&0&{ - 2}&0&0\\0&1&0&{ - 1}&2&0&0\\0&0&1&2&0&{ - 6}&0\\0&0&0&1&0&{ - \frac{5}{2}}&0\\0&0&0&0&1&{ - \frac{1}{2}}&0\end{array}} \right]\)

For row 2, multiply row 5 with 2 and subtract it from row 2, i.e., \({R_2} \to {R_2} - 2{R_5}\).

\(\left[ {\begin{array}{*{20}{c}}1&0&0&0&{ - 2}&0&0\\{0 - 0}&{1 - 0}&{0 - 0}&{ - 1 - 0}&{2 - 2\left( 1 \right)}&{0 - 2\left( { - \frac{1}{2}} \right)}&0\\0&0&1&2&0&{ - 6}&0\\0&0&0&1&0&{ - \frac{5}{2}}&0\\0&0&0&0&1&{ - \frac{1}{2}}&0\end{array}} \right]\)

After the row operation, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&0&0&0&{ - 2}&0&0\\0&1&0&{ - 1}&0&1&0\\0&0&1&2&0&{ - 6}&0\\0&0&0&1&0&{ - \frac{5}{2}}&0\\0&0&0&0&1&{ - \frac{1}{2}}&0\end{array}} \right]\)

For row 1, multiply row 5 with 2 and add it to row 1, i.e., \({R_1} \to {R_1} + 2{R_5}\).

\(\left[ {\begin{array}{*{20}{c}}{1 + 0}&{0 + 0}&{0 + 0}&{0 + 0}&{ - 2 + 2\left( 1 \right)}&{0 + 2\left( { - \frac{1}{2}} \right)}&0\\0&1&0&{ - 1}&0&1&0\\0&0&1&2&0&{ - 6}&0\\0&0&0&1&0&{ - \frac{5}{2}}&0\\0&0&0&0&1&{ - \frac{1}{2}}&0\end{array}} \right]\)

After the row operation, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&0&0&0&0&{ - 1}&0\\0&1&0&{ - 1}&0&1&0\\0&0&1&2&0&{ - 6}&0\\0&0&0&1&0&{ - \frac{5}{2}}&0\\0&0&0&0&1&{ - \frac{1}{2}}&0\end{array}} \right]\)

08

Simplification of the augmented matrix using row operations

For row 3, multiply row 4 with 2 and subtract it from row 3, i.e., \({R_3} \to {R_3} - 2{R_4}\).

\(\left[ {\begin{array}{*{20}{c}}1&0&0&0&0&{ - 1}&0\\0&1&0&{ - 1}&0&1&0\\{0 - 0}&{0 - 0}&{1 - 0}&{2 - 2\left( 1 \right)}&{0 - 0}&{ - 6 - 2\left( { - \frac{5}{2}} \right)}&0\\0&0&0&1&0&{ - \frac{5}{2}}&0\\0&0&0&0&1&{ - \frac{1}{2}}&0\end{array}} \right]\)

After the row operation, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&0&0&0&0&{ - 1}&0\\0&1&0&{ - 1}&0&1&0\\0&0&1&0&0&{ - 1}&0\\0&0&0&1&0&{ - \frac{5}{2}}&0\\0&0&0&0&1&{ - \frac{1}{2}}&0\end{array}} \right]\)

For row 2, add row 4 and row 2, i.e., \({R_2} \to {R_2} + {R_4}\).

\(\left[ {\begin{array}{*{20}{c}}1&0&0&0&0&{ - 1}&0\\{0 + 0}&{1 + 0}&{0 + 0}&{ - 1 + 1}&{0 + 0}&{1 - \frac{5}{2}}&0\\0&0&1&0&0&{ - 1}&0\\0&0&0&1&0&{ - \frac{5}{2}}&0\\0&0&0&0&1&{ - \frac{1}{2}}&0\end{array}} \right]\)

After the row operation, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&0&0&0&0&{ - 1}&0\\0&1&0&0&0&{ - \frac{3}{2}}&0\\0&0&1&0&0&{ - 1}&0\\0&0&0&1&0&{ - \frac{5}{2}}&0\\0&0&0&0&1&{ - \frac{1}{2}}&0\end{array}} \right]\)

09

Finding the general solution

The general solution for the coefficients of the chemical reaction is:

\({x_1} = {x_6}\), \({x_2} = \frac{3}{2}{x_6}\), \({x_3} = {x_6}\), \({x_4} = \frac{5}{2}{x_6}\) and \({x_5} = \frac{1}{2}{x_6}\).

Let \({x_6} = 2\), then

\({x_1} = 2\), \({x_2} = 3\), \({x_3} = 2\), \({x_4} = 5\) and \({x_5} = 1\)

So, the balanced chemical reaction is:

\(2{\rm{KMn}}{{\rm{O}}_4} + 3{\rm{MnS}}{{\rm{O}}_4} + 2{{\rm{H}}_2}{\rm{O}} \to 5{\rm{Mn}}{{\rm{O}}_2} + {{\rm{K}}_2}{\rm{S}}{{\rm{O}}_4} + 2{{\rm{H}}_2}{\rm{S}}{{\rm{O}}_4}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 11 and 12, determine if \({\rm{b}}\) is a linear combination of \({{\mathop{\rm a}\nolimits} _1},{a_2}\) and \({a_3}\).

11.\({a_1} = \left[ {\begin{array}{*{20}{c}}1\\{ - 2}\\0\end{array}} \right],{a_2} = \left[ {\begin{array}{*{20}{c}}0\\1\\2\end{array}} \right],{a_3} = \left[ {\begin{array}{*{20}{c}}5\\{ - 6}\\8\end{array}} \right],{\mathop{\rm b}\nolimits} = \left[ {\begin{array}{*{20}{c}}2\\{ - 1}\\6\end{array}} \right]\)

Question:Let A be the n x n matrix with 0's on the main diagonal, and 1's everywhere else. For an arbitrary vector bin n, solve the linear system Ax=b, expressing the components x1,.......,xnof xin terms of the components of b. See Exercise 69 for the case n=3 .

Find the elementary row operation that transforms the first matrix into the second, and then find the reverse row operation that transforms the second matrix into the first.

29. \(\left[ {\begin{array}{*{20}{c}}0&{ - 2}&5\\1&4&{ - 7}\\3&{ - 1}&6\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}1&4&{ - 7}\\0&{ - 2}&5\\3&{ - 1}&6\end{array}} \right]\)

Find all the polynomials of degree2[a polynomial of the formf(t)=a+bt+ct2] whose graph goes through the points (1,3)and(2,6),such that f'(1)=1[wheref'(t)denotes the derivative].

Consider a dynamical system x(t+1)=Ax(t) with two components. The accompanying sketch shows the initial state vector x0and two eigen vectors υ1andυ2 of A (with eigen values λ1andλ2 respectively). For the given values of λ1andλ2, draw a rough trajectory. Consider the future and the past of the system.

λ1=1,λ2=0.9

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free