In Exercises 5-8, write a matrix equation that determines the loop currents. [M] If MATLAB or another matrix program is available, solve the system for the loop currents.

Short Answer

Expert verified

\(\left[ {\begin{array}{*{20}{c}}{3.37}\\{0.11}\\{2.27}\\{1.67}\\{1.70}\end{array}} \right]\)

Step by step solution

01

Find the resistance vector for loop 1

In loop 1, current \({I_3}\) is not flowing. Current \({I_1}\) has four \(RI\) voltage drops and \({I_2}\) is negative as it flows in the opposite direction. The voltage drop for \({I_4}\) and \({I_5}\) is negative.

So, the resistance vector for loop 1 is

\({r_1} = \left[ {\begin{array}{*{20}{c}}{15}\\{ - 5}\\0\\{ - 5}\\{ - 1}\end{array}} \right]\).

02

Find the resistance vector for loop 2

In loop 2, current \({I_4}\) is not flowing. Current \({I_1}\) has a negative voltage drop and \({I_2}\) has four \(RI\) drops. Voltage drop for \({I_3}\) and \({I_5}\) is negative.

So, theresistance vector for loop 2 is

\({r_2} = \left[ {\begin{array}{*{20}{c}}{ - 5}\\{15}\\{ - 5}\\0\\{ - 2}\end{array}} \right]\).

03

Find the resistance vector for loop 3

In loop 3, current \({I_1}\) is not flowing. Current \({I_2}\) has a negative voltage drop. \({I_3}\) has four \(RI\) drops. \({I_4}\) and \({I_5}\) have negative voltage drops.

So, the resistance vector for loop 3 is

\({r_3} = \left[ {\begin{array}{*{20}{c}}0\\{ - 5}\\{15}\\{ - 5}\\{ - 3}\end{array}} \right]\).

04

Find the resistance vector for loop 4

In loop 4, current \({I_2}\) is not flowing. Currents \({I_1}\) and \({I_3}\) have negative voltage drops. Current \({I_4}\) has four \(RI\) drops and \({I_5}\) has a negative voltage drop.

So, the resistance vector for loop 4 is

\({r_4} = \left[ {\begin{array}{*{20}{c}}{ - 5}\\0\\{ - 5}\\{15}\\{ - 4}\end{array}} \right]\).

05

Find the resistance vector for loop 5

In loop 5, current \({I_5}\) has four \(RI\) drops, and all other currents have negative voltage drops.

So, the resistance vector for loop 5 is

\({r_5} = \left[ {\begin{array}{*{20}{c}}{ - 1}\\{ - 2}\\{ - 3}\\{ - 4}\\{10}\end{array}} \right]\).

06

Form the equivalent matrix

\[\begin{array}{c}\left[ {\begin{array}{*{20}{c}}{{{\bf{r}}_1}}&{{{\bf{r}}_2}}&{{{\bf{r}}_3}}&{{{\bf{r}}_4}}&{{{\bf{r}}_5}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{I_1}}\\{{I_2}}\\{{I_3}}\\{{I_4}}\\{{I_5}}\end{array}} \right] = \left[ v \right]\\\left[ {\begin{array}{*{20}{c}}{15}&{ - 5}&0&{ - 5}&{ - 1}\\{ - 5}&{15}&{ - 5}&0&{ - 2}\\0&{ - 5}&{15}&{ - 5}&{ - 3}\\{ - 5}&0&{ - 5}&{15}&{ - 4}\\{ - 1}&{ - 2}&{ - 3}&{ - 4}&{10}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{I_1}}\\{{I_2}}\\{{I_3}}\\{{I_4}}\\{{I_5}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{40}\\{ - 30}\\{20}\\{ - 10}\\0\end{array}} \right]\end{array}\]

07

Convert the matrix into row-reduced echelon form

Consider the matrix \(A = \left[ {\begin{array}{*{20}{c}}{15}&{ - 5}&0&{ - 5}&{ - 1}&{40}\\{ - 5}&{15}&{ - 5}&0&{ - 2}&{ - 30}\\0&{ - 5}&{15}&{ - 5}&{ - 3}&{20}\\{ - 5}&0&{ - 5}&{15}&{ - 4}&{ - 10}\\{ - 1}&{ - 2}&{ - 3}&{ - 4}&{10}&0\end{array}} \right]\).

Use the code in MATLAB to obtain the row-reduced echelon form, as shown below:

\[\begin{array}{l} > > {\rm{ A }} = {\rm{ }}\left[ {\begin{array}{*{20}{c}}{15}&{ - 5}&0&{ - 5}&{ - 1}&{ - 40}\end{array};{\rm{ }}\begin{array}{*{20}{c}}{ - 5}&{15}&{ - 5}&0&{ - 1}&{30}\end{array};{\rm{ }}\begin{array}{*{20}{c}}0&{ - 5}&{15}&{ - 5}&{ - 3}&{ - 20}\end{array};{\rm{ }}\begin{array}{*{20}{c}}{ - 5}&0&{ - 5}&{15}&{ - 4}&{10;\,\,\begin{array}{*{20}{c}}{ - 1}&{ - 2}&{ - 3}&{ - 4}&{10}&0\end{array}}\end{array}{\rm{ }}} \right];\\ > > {\rm{ U}} = {\rm{rref}}\left( {\rm{A}} \right)\end{array}\]

\(\left[ {\begin{array}{*{20}{c}}{15}&{ - 5}&0&{ - 5}&{ - 1}&{40}\\{ - 5}&{15}&{ - 5}&0&{ - 2}&{ - 30}\\0&{ - 5}&{15}&{ - 5}&{ - 3}&{20}\\{ - 5}&0&{ - 5}&{15}&{ - 4}&{ - 10}\\{ - 1}&{ - 2}&{ - 3}&{ - 4}&{10}&0\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&0&0&0&0&{ - 3.37}\\0&1&0&0&0&{ - 0.11}\\0&0&1&0&0&{ - 2.27}\\0&0&0&1&0&{ - 1.67}\\0&0&0&0&1&{ - 1.70}\end{array}} \right]\)

Here, the negative sign represents the direction of the current in the loop.

08

Find the general solution for loop currents using the echelon form

\(\left[ {\begin{array}{*{20}{c}}{{I_1}}\\{{I_2}}\\{{I_3}}\\{{I_4}}\\{{I_5}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{3.37}\\{0.11}\\{2.27}\\{1.67}\\{1.70}\end{array}} \right]\)

So, the loop currents in the given circuit are \(\left[ {\begin{array}{*{20}{c}}{3.37}\\{0.11}\\{2.27}\\{1.67}\\{1.70}\end{array}} \right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 32, find the elementary row operation that transforms the first matrix into the second, and then find the reverse row operation that transforms the second matrix into the first.

32. \(\left[ {\begin{array}{*{20}{c}}1&2&{ - 5}&0\\0&1&{ - 3}&{ - 2}\\0&{ - 3}&9&5\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}1&2&{ - 5}&0\\0&1&{ - 3}&{ - 2}\\0&0&0&{ - 1}\end{array}} \right]\)

Determine whether the statements that follow are true or false, and justify your answer.

18: [111315171921][-13-1]=[131921]


Consider two vectors v1 andv2in R3 that are not parallel.

Which vectors inlocalid="1668167992227" 3are linear combinations ofv1andv2? Describe the set of these vectors geometrically. Include a sketch in your answer.

In Exercise 23 and 24, make each statement True or False. Justify each answer.

24.

a. Any list of five real numbers is a vector in \({\mathbb{R}^5}\).

b. The vector \({\mathop{\rm u}\nolimits} \) results when a vector \({\mathop{\rm u}\nolimits} - v\) is added to the vector \({\mathop{\rm v}\nolimits} \).

c. The weights \({{\mathop{\rm c}\nolimits} _1},...,{c_p}\) in a linear combination \({c_1}{v_1} + \cdot \cdot \cdot + {c_p}{v_p}\) cannot all be zero.

d. When are \({\mathop{\rm u}\nolimits} \) nonzero vectors, Span \(\left\{ {u,v} \right\}\) contains the line through \({\mathop{\rm u}\nolimits} \) and the origin.

e. Asking whether the linear system corresponding to an augmented matrix \(\left[ {\begin{array}{*{20}{c}}{{{\rm{a}}_{\rm{1}}}}&{{{\rm{a}}_{\rm{2}}}}&{{{\rm{a}}_{\rm{3}}}}&{\rm{b}}\end{array}} \right]\) has a solution amounts to asking whether \({\mathop{\rm b}\nolimits} \) is in Span\(\left\{ {{a_1},{a_2},{a_3}} \right\}\).

Find the elementary row operation that transforms the first matrix into the second, and then find the reverse row operation that transforms the second matrix into the first.

29. \(\left[ {\begin{array}{*{20}{c}}0&{ - 2}&5\\1&4&{ - 7}\\3&{ - 1}&6\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}1&4&{ - 7}\\0&{ - 2}&5\\3&{ - 1}&6\end{array}} \right]\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free