Let \(A = \left( {\begin{aligned}{*{20}{c}}1&1&1\\1&2&3\\1&4&5\end{aligned}} \right)\), and \(D = \left( {\begin{aligned}{*{20}{c}}2&0&0\\0&3&0\\0&0&5\end{aligned}} \right)\). Compute \(AD\) and \(DA\). Explain how the columns or rows of A change when A is multiplied by D on the right or on the left. Find a \(3 \times 3\) matrix B, not the identity matrix or the zero matrix, such that \(AB = BA\).

Short Answer

Expert verified

The products are\(AD = \left( {\begin{aligned}{*{20}{c}}2&3&5\\2&6&{15}\\2&{12}&{25}\end{aligned}} \right)\), and\(DA = \left( {\begin{aligned}{*{20}{c}}2&2&2\\3&6&9\\5&{20}&{25}\end{aligned}} \right)\).

Each column of matrix A is multiplied by the appropriate diagonal entry of matrix D using right-multiplication by the diagonal matrix D. Each row of matrix A is multiplied by the appropriate diagonal entry of D when left-multiplication by D is used.

It is proved that \(AB = BA\).

Step by step solution

01

Definition of matrix multiplication

Consider two matrices P and Q of order\(m \times n\)and\(n \times p\), respectively. The order of the product PQ matrix is\(m \times p\).

Let\({{\bf{q}}_1},{{\bf{q}}_2},...,{{\bf{q}}_n}\)be the columns of the matrix Q. Then, the product PQ is obtained as shown below:

\(\begin{aligned}{c}PQ = P\left( {\begin{aligned}{*{20}{c}}{{{\bf{q}}_1}}&{{{\bf{q}}_2}}& \cdots &{{{\bf{q}}_n}}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{P{{\bf{q}}_1}}&{P{{\bf{q}}_2}}& \cdots &{P{{\bf{q}}_n}}\end{aligned}} \right)\end{aligned}\)

02

Obtain the product AD

Consider the matrices\(A = \left( {\begin{aligned}{*{20}{c}}1&1&1\\1&2&3\\1&4&5\end{aligned}} \right)\)and\(D = \left( {\begin{aligned}{*{20}{c}}2&0&0\\0&3&0\\0&0&5\end{aligned}} \right)\).

Obtain the product of matrices\(A = \left( {\begin{aligned}{*{20}{c}}1&1&1\\1&2&3\\1&4&5\end{aligned}} \right)\)and\(D = \left( {\begin{aligned}{*{20}{c}}2&0&0\\0&3&0\\0&0&5\end{aligned}} \right)\)as shown below:

\(\begin{aligned}{c}AD = \left( {\begin{aligned}{*{20}{c}}1&1&1\\1&2&3\\1&4&5\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}2&0&0\\0&3&0\\0&0&5\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{2 + 0 + 0}&{0 + 3 + 0}&{0 + 0 + 5}\\{2 + 0 + 0}&{0 + 6 + 0}&{0 + 0 + 15}\\{2 + 0 + 0}&{0 + 12 + 0}&{0 + 0 + 25}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}2&3&5\\2&6&{15}\\2&{12}&{25}\end{aligned}} \right)\end{aligned}\)

Thus, \(AD = \left( {\begin{aligned}{*{20}{c}}2&3&5\\2&6&{15}\\2&{12}&{25}\end{aligned}} \right)\).

03

Obtain the product AD

Consider the matrices\(A = \left( {\begin{aligned}{*{20}{c}}1&1&1\\1&2&3\\1&4&5\end{aligned}} \right)\)and\(D = \left( {\begin{aligned}{*{20}{c}}2&0&0\\0&3&0\\0&0&5\end{aligned}} \right)\).

Obtain the product of matrices\(D = \left( {\begin{aligned}{*{20}{c}}2&0&0\\0&3&0\\0&0&5\end{aligned}} \right)\)and\(A = \left( {\begin{aligned}{*{20}{c}}1&1&1\\1&2&3\\1&4&5\end{aligned}} \right)\)as shown below:

\(\begin{aligned}{c}DA = \left( {\begin{aligned}{*{20}{c}}2&0&0\\0&3&0\\0&0&5\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1&1&1\\1&2&3\\1&4&5\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{2 + 0 + 0}&{2 + 0 + 0}&{2 + 0 + 0}\\{0 + 3 + 0}&{0 + 6 + 0}&{0 + 9 + 0}\\{0 + 0 + 5}&{0 + 0 + 20}&{0 + 0 + 25}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}2&2&2\\3&6&9\\5&{20}&{25}\end{aligned}} \right)\end{aligned}\)

Thus, \(DA = \left( {\begin{aligned}{*{20}{c}}2&2&2\\3&6&9\\5&{20}&{25}\end{aligned}} \right)\). So, \(AD \ne DA\).

04

Right-multiplication and left-multiplication

Each column of matrix A, that is\(\left( {\begin{aligned}{*{20}{c}}1\\1\\1\end{aligned}} \right)\), \(\left( {\begin{aligned}{*{20}{c}}1\\2\\4\end{aligned}} \right)\), and \(\left( {\begin{aligned}{*{20}{c}}1\\3\\5\end{aligned}} \right)\)is multiplied by the appropriate diagonal entry of matrix D using right-multiplication by the diagonal matrix D. Each row of matrix A is multiplied by the appropriate diagonal entry of D when left-multiplication by D is used.

05

Construct a \(3 \times 3\) matrix, and obtain the product AB

The matrix\(B = \left( {\begin{aligned}{*{20}{c}}{ - 2}&0&0\\0&{ - 2}&0\\0&0&{ - 2}\end{aligned}} \right)\).

Obtain the product of matrices\(A = \left( {\begin{aligned}{*{20}{c}}1&1&1\\1&2&3\\1&4&5\end{aligned}} \right)\)and\(B = \left( {\begin{aligned}{*{20}{c}}{ - 2}&0&0\\0&{ - 2}&0\\0&0&{ - 2}\end{aligned}} \right)\)as shown below:

\(\begin{aligned}{c}AB = \left( {\begin{aligned}{*{20}{c}}1&1&1\\1&2&3\\1&4&5\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}{ - 2}&0&0\\0&{ - 2}&0\\0&0&{ - 2}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{ - 2 + 0 + 0}&{0 - 2 + 0}&{0 + 0 - 2}\\{ - 2 + 0 + 0}&{0 - 4 + 0}&{0 + 0 - 6}\\{ - 2 + 0 + 0}&{0 - 8 + 0}&{0 + 0 - 10}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{ - 2}&{ - 2}&{ - 2}\\{ - 2}&{ - 4}&{ - 6}\\{ - 2}&{ - 8}&{ - 10}\end{aligned}} \right)\end{aligned}\)

Thus, \(AB = \left( {\begin{aligned}{*{20}{c}}{ - 2}&{ - 2}&{ - 2}\\{ - 2}&{ - 4}&{ - 6}\\{ - 2}&{ - 8}&{ - 10}\end{aligned}} \right)\).

06

Obtain the product BA

Obtain the product of matrices\(B = \left( {\begin{aligned}{*{20}{c}}{ - 2}&0&0\\0&{ - 2}&0\\0&0&{ - 2}\end{aligned}} \right)\)and\(A = \left( {\begin{aligned}{*{20}{c}}1&1&1\\1&2&3\\1&4&5\end{aligned}} \right)\)as shown below:

\(\begin{aligned}{c}BA = \left( {\begin{aligned}{*{20}{c}}{ - 2}&0&0\\0&{ - 2}&0\\0&0&{ - 2}\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1&1&1\\1&2&3\\1&4&5\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{ - 2 + 0 + 0}&{ - 2 + 0 + 0}&{ - 2 + 0 + 0}\\{0 - 2 + 0}&{0 - 4 + 0}&{0 - 6 + 0}\\{0 + 0 - 2}&{0 + 0 - 8}&{0 + 0 - 10}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{ - 2}&{ - 2}&{ - 2}\\{ - 2}&{ - 4}&{ - 6}\\{ - 2}&{ - 8}&{ - 10}\end{aligned}} \right)\end{aligned}\)

Thus,\(BA = \left( {\begin{aligned}{*{20}{c}}{ - 2}&{ - 2}&{ - 2}\\{ - 2}&{ - 4}&{ - 6}\\{ - 2}&{ - 8}&{ - 10}\end{aligned}} \right)\). So,\(AB = BA\).

Therefore, \(AD = \left( {\begin{aligned}{*{20}{c}}2&3&5\\2&6&{15}\\2&{12}&{25}\end{aligned}} \right)\), and \(DA = \left( {\begin{aligned}{*{20}{c}}2&2&2\\3&6&9\\5&{20}&{25}\end{aligned}} \right)\). And it is proved that \(AB = BA\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. Compute the products shown in Exercises 1–4.

4. \[\left[ {\begin{array}{*{20}{c}}I&0\\{ - X}&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&B\\C&D\end{array}} \right]\]

In exercise 5 and 6, compute the product \(AB\) in two ways: (a) by the definition, where \(A{b_{\bf{1}}}\) and \(A{b_{\bf{2}}}\) are computed separately, and (b) by the row-column rule for computing \(AB\).

\(A = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{1}}}&{\bf{2}}\\{\bf{5}}&{\bf{4}}\\{\bf{2}}&{ - {\bf{3}}}\end{aligned}} \right)\), \(B = \left( {\begin{aligned}{*{20}{c}}{\bf{3}}&{ - {\bf{2}}}\\{ - {\bf{2}}}&{\bf{1}}\end{aligned}} \right)\)

A useful way to test new ideas in matrix algebra, or to make conjectures, is to make calculations with matrices selected at random. Checking a property for a few matrices does not prove that the property holds in general, but it makes the property more believable. Also, if the property is actually false, you may discover this when you make a few calculations.

37. Construct a random \({\bf{4}} \times {\bf{4}}\) matrix Aand test whether \(\left( {A + I} \right)\left( {A - I} \right) = {A^2} - I\). The best way to do this is to compute \(\left( {A + I} \right)\left( {A - I} \right) - \left( {{A^2} - I} \right)\) and verify that this difference is the zero matrix. Do this for three random matrices. Then test \(\left( {A + B} \right)\left( {A - B} \right) = {A^2} - {B^{\bf{2}}}\) the same way for three pairs of random \({\bf{4}} \times {\bf{4}}\) matrices. Report your conclusions.

In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. Compute the products shown in Exercises 1–4.

3. \[\left[ {\begin{array}{*{20}{c}}{\bf{0}}&I\\I&{\bf{0}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}W&X\\Y&Z\end{array}} \right]\]

In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. In Exercises 5–8, find formulas for X, Y, and Zin terms of A, B, and C, and justify your calculations. In some cases, you may need to make assumptions about the size of a matrix in order to produce a formula. [Hint:Compute the product on the left, and set it equal to the right side.]

6. \[\left[ {\begin{array}{*{20}{c}}X&{\bf{0}}\\Y&Z\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&{\bf{0}}\\B&C\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\{\bf{0}}&I\end{array}} \right]\]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free