[M] Let \({A_n}\) be the \(n \times n\) matrix with 0’s on the main diagonal and 1’s elsewhere. Compute \(A_n^{ - 1}\) for \(n = 4,5\), and 6, and make a conjecture about the general form of \(A_n^{ - 1}\) for larger values of \(n\).

Short Answer

Expert verified

The conjecture about the general form of \(A_n^{ - 1}\) is \({A_n} = J - {I_n}\) and \(A_n^{ - 1} = \frac{1}{{n - 1}} \cdot J - {I_n}\).

Step by step solution

01

Determine \[{A_4},{A_5},{A_6}\]

Use the MATLAB code to compute \[A_4^{ - 1},A_5^{ - 1},A_6^{ - 1}\] as shown below:

\( > > {\mathop{\rm A}\nolimits} 4 = {\mathop{\rm ones}\nolimits} \left( 4 \right) - {\mathop{\rm eye}\nolimits} \left( 4 \right)\)

\({A_4} = \left[ {\begin{aligned}{*{20}{c}}0&1&1&1\\1&0&1&1\\1&1&0&1\\1&1&1&0\end{aligned}} \right]\)

\( > > {\mathop{\rm A}\nolimits} 5 = {\mathop{\rm ones}\nolimits} \left( 5 \right) - {\mathop{\rm eye}\nolimits} \left( 5 \right)\)

\({A_5} = \left[ {\begin{aligned}{*{20}{c}}0&1&1&1&1\\1&0&1&1&1\\1&1&0&1&1\\1&1&1&0&1\\1&1&1&1&0\end{aligned}} \right]\)

\( > > {\mathop{\rm A}\nolimits} 6 = {\mathop{\rm ones}\nolimits} \left( 6 \right) - {\mathop{\rm eye}\nolimits} \left( 6 \right)\)

\({A_6} = \left[ {\begin{aligned}{*{20}{c}}0&1&1&1&1&1\\1&0&1&1&1&1\\1&1&0&1&1&1\\1&1&1&0&1&1\\1&1&1&1&0&1\\1&1&1&1&1&0\end{aligned}} \right]\)

02

Determine the inverse of \[{A_4},{A_5},{A_6}\]

Use the MATLAB code to compute the inverse of \[{A_4},{A_5},{A_6}\] as shown below:

\( > > {\mathop{\rm inv}\nolimits} \left( {{\mathop{\rm A}\nolimits} 4} \right)\)

\(A_4^{ - 1} = \left[ {\begin{aligned}{*{20}{c}}{\frac{{ - 2}}{3}}&{\frac{1}{3}}&{\frac{1}{3}}&{\frac{1}{3}}\\{\frac{1}{3}}&{\frac{{ - 2}}{3}}&{\frac{1}{3}}&{\frac{1}{3}}\\{\frac{1}{3}}&{\frac{1}{3}}&{\frac{{ - 2}}{3}}&{\frac{1}{3}}\\{\frac{1}{3}}&{\frac{1}{3}}&{\frac{1}{3}}&{\frac{{ - 2}}{3}}\end{aligned}} \right]\)

\( > > {\mathop{\rm inv}\nolimits} \left( {{\mathop{\rm A}\nolimits} 5} \right)\)

\(A_5^{ - 1} = \left[ {\begin{aligned}{*{20}{c}}{\frac{{ - 3}}{4}}&{\frac{1}{4}}&{\frac{1}{4}}&{\frac{1}{4}}&{\frac{1}{4}}\\{\frac{1}{4}}&{\frac{{ - 3}}{4}}&{\frac{1}{4}}&{\frac{1}{4}}&{\frac{1}{4}}\\{\frac{1}{4}}&{\frac{1}{4}}&{\frac{{ - 3}}{4}}&{\frac{1}{4}}&{\frac{1}{4}}\\{\frac{1}{4}}&{\frac{1}{4}}&{\frac{1}{4}}&{\frac{{ - 3}}{4}}&{\frac{1}{4}}\\{\frac{1}{4}}&{\frac{1}{4}}&{\frac{1}{4}}&{\frac{1}{4}}&{\frac{{ - 3}}{4}}\end{aligned}} \right]\)

\( > > {\mathop{\rm inv}\nolimits} \left( {{\mathop{\rm A}\nolimits} 6} \right)\)

\[A_6^{ - 1} = \left[ {\begin{aligned}{*{20}{c}}{\frac{{ - 4}}{5}}&{\frac{1}{5}}&{\frac{1}{5}}&{\frac{1}{5}}&{\frac{1}{5}}&{\frac{1}{5}}\\{\frac{1}{5}}&{\frac{{ - 4}}{5}}&{\frac{1}{5}}&{\frac{1}{5}}&{\frac{1}{5}}&{\frac{1}{5}}\\{\frac{1}{5}}&{\frac{1}{5}}&{\frac{{ - 4}}{5}}&{\frac{1}{5}}&{\frac{1}{5}}&{\frac{1}{5}}\\{\frac{1}{5}}&{\frac{1}{5}}&{\frac{1}{5}}&{\frac{{ - 4}}{5}}&{\frac{1}{5}}&{\frac{1}{5}}\\{\frac{1}{5}}&{\frac{1}{5}}&{\frac{1}{5}}&{\frac{1}{5}}&{\frac{{ - 4}}{5}}&{\frac{1}{5}}\\{\frac{1}{5}}&{\frac{1}{5}}&{\frac{1}{5}}&{\frac{1}{5}}&{\frac{1}{5}}&{\frac{{ - 4}}{5}}\end{aligned}} \right]\]

03

Make a conjecture about the general form of \(A_n^{ - 1}\)

According to the construction of \({A_6}\) and the appearance of its inverse, the inverse is related to \({I_6}\). Moreover, \(A_6^{ - 1} + {I_6}\) is \(\frac{1}{5}\) times the \(6 \times 6\) matrix of ones.

Suppose \(J\) represents the \(n \times n\) matrix of ones. Then, the conjecture is \({A_n} = J - {I_n}\) and \(A_n^{ - 1} = \frac{1}{{n - 1}} \cdot J - {I_n}\).

Thus, the conjecture about the general form of \(A_n^{ - 1}\) is \({A_n} = J - {I_n}\) and \(A_n^{ - 1} = \frac{1}{{n - 1}} \cdot J - {I_n}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Describe in words what happens when you compute \({A^{\bf{5}}}\), \({A^{{\bf{10}}}}\), \({A^{{\bf{20}}}}\), and \({A^{{\bf{30}}}}\) for \(A = \left( {\begin{aligned}{*{20}{c}}{1/6}&{1/2}&{1/3}\\{1/2}&{1/4}&{1/4}\\{1/3}&{1/4}&{5/12}\end{aligned}} \right)\).

Assume \(A - s{I_n}\) is invertible and view (8) as a system of two matrix equations. Solve the top equation for \({\bf{x}}\) and substitute into the bottom equation. The result is an equation of the form \(W\left( s \right){\bf{u}} = {\bf{y}}\), where \(W\left( s \right)\) is a matrix that depends upon \(s\). \(W\left( s \right)\) is called the transfer function of the system because it transforms the input \({\bf{u}}\) into the output \({\bf{y}}\). Find \(W\left( s \right)\) and describe how it is related to the partitioned system matrix on the left side of (8). See Exercise 15.

Suppose the transfer function W(s) in Exercise 19 is invertible for some s. It can be showed that the inverse transfer function \(W{\left( s \right)^{ - {\bf{1}}}}\), which transforms outputs into inputs, is the Schur complement of \(A - BC - s{I_n}\) for the matrix below. Find the Sachur complement. See Exercise 15.

\(\left[ {\begin{array}{*{20}{c}}{A - BC - s{I_n}}&B\\{ - C}&{{I_m}}\end{array}} \right]\)

Suppose Ais an \(m \times n\) matrix and there exist \(n \times m\) matrices C and D such that \(CA = {I_n}\) and \(AD = {I_m}\). Prove that \(m = n\) and \(C = D\). (Hint: Think about the product CAD.)

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be an invertible linear transformation. Explain why T is both one-to-one and onto \({\mathbb{R}^n}\). Use equations (1) and (2). Then give a second explanation using one or more theorems.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free