In Exercises 33 and 34, Tis a linear transformation from \({\mathbb{R}^2}\) into \({\mathbb{R}^2}\). Show that T is invertible and find a formula for \({T^{ - 1}}\).

34. \(T\left( {{x_1},{x_2}} \right) = \left( {6{x_1} - 8{x_2}, - 5{x_1} + 7{x_2}} \right)\)

Short Answer

Expert verified

The formula for \({T^{ - 1}}\) is \[{T^{ - 1}}\left( {{x_1},{x_2}} \right) = \left( {\frac{7}{2}{x_1} + 4{x_2},\frac{5}{2}{x_1} + 3{x_2}} \right)\].

Step by step solution

01

Determine the standard matrix T

Write the transformation \(T\left( x \right)\) and \(x\) in the column vector of \(A\).

\[\begin{array}{c}T\left( x \right) = \left[ {\begin{array}{*{20}{c}}{6{x_1} - 8{x_2}}\\{ - 5{x_1} + 7{x_3}}\end{array}} \right]\\ = \left[ A \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}6&{ - 8}\\{ - 5}&7\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right]\end{array}\]

Thus, the standard matrix of T is \(A = \left[ {\begin{array}{*{20}{c}}6&{ - 8}\\{ - 5}&7\end{array}} \right]\).

02

Show that T  is invertible

Theorem 4 states that \(A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\). If \(ad - bc \ne 0\), then A is invertible.

\({A^{ - 1}} = \frac{1}{{ad - bc}}\left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\)

If \(ad - bc = 0\), then Aisnot invertible.

The linear transformation T is invertible since det\(A = 2 \ne 0\).

03

Determine the formula for \({T^{ - 1}}\)

Let\(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be a linear transformation and Abe the standard matrix for T. Then, according toTheorem 9,Tis invertible if and only if Ais an invertible matrix. The linear transformation S, given by \[S\left( x \right) = {A^{ - 1}}{\mathop{\rm x}\nolimits} \], is a unique function satisfying the equations

  1. \(S\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \)for all x in \({\mathbb{R}^n}\), and
  2. \(T\left( {S\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \)for all x in \({\mathbb{R}^n}\).

According to theorem 9, transformation Tis invertible and \({T^{ - 1}}\left( x \right) = Bx\), where\(B = {A^{ - 1}}\).

Use the formula for \(2 \times 2\) inverse.

\(\begin{array}{c}{A^{ - 1}} = \frac{1}{{42 - 40}}\left[ {\begin{array}{*{20}{c}}7&8\\5&6\end{array}} \right]\\ = \frac{1}{2}\left[ {\begin{array}{*{20}{c}}7&8\\5&6\end{array}} \right]\end{array}\)

Therefore,

\[\begin{array}{c}{T^{ - 1}}\left( {{x_1},{x_2}} \right) = {A^{ - 1}}x\\ = \frac{1}{2}\left[ {\begin{array}{*{20}{c}}7&8\\5&6\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right]\\ = \left( {\frac{7}{2}{x_1} + 4{x_2},\frac{5}{2}{x_1} + 3{x_2}} \right)\end{array}\]

Thus, the formula for \({T^{ - 1}}\) is \[{T^{ - 1}}\left( {{x_1},{x_2}} \right) = \left( {\frac{7}{2}{x_1} + 4{x_2},\frac{5}{2}{x_1} + 3{x_2}} \right)\].

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In exercise 5 and 6, compute the product \(AB\) in two ways: (a) by the definition, where \(A{b_{\bf{1}}}\) and \(A{b_{\bf{2}}}\) are computed separately, and (b) by the row-column rule for computing \(AB\).

\(A = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{1}}}&{\bf{2}}\\{\bf{5}}&{\bf{4}}\\{\bf{2}}&{ - {\bf{3}}}\end{aligned}} \right)\), \(B = \left( {\begin{aligned}{*{20}{c}}{\bf{3}}&{ - {\bf{2}}}\\{ - {\bf{2}}}&{\bf{1}}\end{aligned}} \right)\)

Suppose \({A_{{\bf{11}}}}\) is an invertible matrix. Find matrices Xand Ysuch that the product below has the form indicated. Also,compute \({B_{{\bf{22}}}}\). [Hint:Compute the product on the left, and setit equal to the right side.]

\[\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}&{\bf{0}}\\X&I&{\bf{0}}\\Y&{\bf{0}}&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{A_{{\bf{1}}1}}}&{{A_{{\bf{1}}2}}}\\{{A_{{\bf{2}}1}}}&{{A_{{\bf{2}}2}}}\\{{A_{{\bf{3}}1}}}&{{A_{{\bf{3}}2}}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{{B_{11}}}&{{B_{12}}}\\{\bf{0}}&{{B_{22}}}\\{\bf{0}}&{{B_{32}}}\end{array}} \right]\]

Explain why the columns of an \(n \times n\) matrix Aspan \({\mathbb{R}^{\bf{n}}}\) when

Ais invertible. (Hint:Review Theorem 4 in Section 1.4.)

If A, B, and X are \(n \times n\) invertible matrices, does the equation \({C^{ - 1}}\left( {A + X} \right){B^{ - 1}} = {I_n}\) have a solution, X? If so, find it.

Prove Theorem 2(b) and 2(c). Use the row-column rule. The \(\left( {i,j} \right)\)- entry in \(A\left( {B + C} \right)\) can be written as \({a_{i1}}\left( {{b_{1j}} + {c_{1j}}} \right) + ... + {a_{in}}\left( {{b_{nj}} + {c_{nj}}} \right)\) or \(\sum\limits_{k = 1}^n {{a_{ik}}\left( {{b_{kj}} + {c_{kj}}} \right)} \).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free