The inverse of \(\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}&{\bf{0}}\\C&I&{\bf{0}}\\A&B&I\end{array}} \right]\) is \(\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}&{\bf{0}}\\Z&I&{\bf{0}}\\X&Y&I\end{array}} \right]\). Find X, Y, and Z.

Short Answer

Expert verified

The values are \(X = BC - A\), \[Y = - B\], and \[Z = - C\].

Step by step solution

01

State the row-column rule

If the sum of the products of matching entries from row\(i\)of matrix A and column\(j\)of matrix B equals the item in row\(i\)and column\(j\)of AB, then it can be said that product AB is defined.

The product is\({\left( {AB} \right)_{ij}} = {a_{i1}}{b_{1j}} + {a_{i2}}{b_{2j}} + ... + {a_{in}}{b_{nj}}\).

Also, the product of matrix A with its inverse always gives theidentity matrix I.

02

Obtain the product

Compute the product of\(\left[ {\begin{array}{*{20}{c}}I&0&0\\C&I&0\\A&B&I\end{array}} \right]\)with\(\left[ {\begin{array}{*{20}{c}}I&0&0\\Z&I&0\\X&Y&I\end{array}} \right]\) to get theidentity matrix\(\left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]\).

\(\begin{array}{c}\left[ {\begin{array}{*{20}{c}}I&0&0\\C&I&0\\A&B&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}I&0&0\\Z&I&0\\X&Y&I\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&0&0\\0&I&0\\0&0&I\end{array}} \right]\\\left[ {\begin{array}{*{20}{c}}{I\left( I \right) + 0\left( Z \right) + 0\left( X \right)}&{I\left( 0 \right) + 0\left( I \right) + 0\left( Y \right)}&{I\left( 0 \right) + 0\left( 0 \right) + 0\left( I \right)}\\{C\left( I \right) + I\left( Z \right) + 0\left( X \right)}&{C\left( 0 \right) + I\left( I \right) + 0\left( Y \right)}&{C\left( 0 \right) + I\left( 0 \right) + 0\left( I \right)}\\{A\left( I \right) + B\left( Z \right) + I\left( X \right)}&{A\left( 0 \right) + B\left( I \right) + I\left( Y \right)}&{A\left( 0 \right) + B\left( 0 \right) + I\left( I \right)}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&0&0\\0&I&0\\0&0&I\end{array}} \right]\\\left[ {\begin{array}{*{20}{c}}I&0&0\\{C + Z}&I&0\\{A + BZ + X}&{B + Y}&I\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&0&0\\0&I&0\\0&0&I\end{array}} \right]\end{array}\)

Thus, \(\left[ {\begin{array}{*{20}{c}}I&0&0\\{C + Z}&I&0\\{A + BZ + X}&{B + Y}&I\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&0&0\\0&I&0\\0&0&I\end{array}} \right]\).

03

Equate both the sides

Equate both the matrices, as shown below:

\(\left[ {\begin{array}{*{20}{c}}I&0&0\\{C + Z}&I&0\\{A + BZ + X}&{B + Y}&I\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&0&0\\0&I&0\\0&0&I\end{array}} \right]\)

By comparing, the formulas obtained are shown below:

\[\begin{array}{c}C + Z = 0\\Z = - C\end{array}\]

And

\[\begin{array}{c}B + Y = 0\\Y = - B\end{array}\]

And

\(\begin{array}{c}A + BZ + X = 0\\A + B\left( { - C} \right) + X = 0\\A - BC + X = 0\\X = BC - A\end{array}\)

Therefore, the values are \(X = BC - A\), \[Y = - B\], and \[Z = - C\].

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In the rest of this exercise set and in those to follow, you should assume that each matrix expression is defined. That is, the sizes of the matrices (and vectors) involved match appropriately.

Compute \(A - {\bf{5}}{I_{\bf{3}}}\) and \(\left( {{\bf{5}}{I_{\bf{3}}}} \right)A\)

\(A = \left( {\begin{aligned}{*{20}{c}}{\bf{9}}&{ - {\bf{1}}}&{\bf{3}}\\{ - {\bf{8}}}&{\bf{7}}&{ - {\bf{6}}}\\{ - {\bf{4}}}&{\bf{1}}&{\bf{8}}\end{aligned}} \right)\)

In exercise 5 and 6, compute the product \(AB\) in two ways: (a) by the definition, where \(A{b_{\bf{1}}}\) and \(A{b_{\bf{2}}}\) are computed separately, and (b) by the row-column rule for computing \(AB\).

\(A = \left( {\begin{aligned}{*{20}{c}}{\bf{4}}&{ - {\bf{2}}}\\{ - {\bf{3}}}&{\bf{0}}\\{\bf{3}}&{\bf{5}}\end{aligned}} \right)\), \(B = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{3}}\\{\bf{2}}&{ - {\bf{1}}}\end{aligned}} \right)\)

If \(A = \left( {\begin{aligned}{*{20}{c}}1&{ - 2}\\{ - 2}&5\end{aligned}} \right)\) and \(AB = \left( {\begin{aligned}{*{20}{c}}{ - 1}&2&{ - 1}\\6&{ - 9}&3\end{aligned}} \right)\), determine the first and second column of B.

In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. Compute the products shown in Exercises 1–4.

2. \[\left[ {\begin{array}{*{20}{c}}E&{\bf{0}}\\{\bf{0}}&F\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&B\\C&D\end{array}} \right]\]

Let T be a linear transformation that maps \({\mathbb{R}^n}\) onto \({\mathbb{R}^n}\). Is \({T^{ - 1}}\) also one-to-one?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free