[M] The consumption matrix C below is based on input-output data for the U.S. economy in 1958, with data for 81 sectors grouped into 7 larger sectors: (1) nonmetal household and personal products, (2) final metal products (such as motor vehicles), (3) basic metal products and mining, (4) basic nonmetal products and agriculture, (5) energy, (6) services, and (7) entertainment and miscellaneous products. Find the production levels needed to satisfy the final demand d. (Units are in millions of dollars.)

\(\left[ {\begin{array}{*{20}{c}}{.{\bf{1588}}}&{.{\bf{0064}}}&{.{\bf{0025}}}&{.{\bf{0304}}}&{.{\bf{0014}}}&{.{\bf{0083}}}&{.{\bf{1594}}}\\{.{\bf{0057}}}&{.{\bf{2645}}}&{.{\bf{0436}}}&{.{\bf{0099}}}&{.{\bf{0083}}}&{.{\bf{0201}}}&{.{\bf{3413}}}\\{.{\bf{0264}}}&{.{\bf{1506}}}&{.{\bf{3557}}}&{.{\bf{0139}}}&{.{\bf{0142}}}&{.{\bf{0070}}}&{.{\bf{0236}}}\\{.{\bf{3299}}}&{.{\bf{0565}}}&{.{\bf{0495}}}&{.{\bf{3636}}}&{.{\bf{0204}}}&{.{\bf{0483}}}&{.{\bf{0649}}}\\{.{\bf{0089}}}&{.{\bf{0081}}}&{.{\bf{0333}}}&{.{\bf{0295}}}&{.{\bf{3412}}}&{.{\bf{0237}}}&{.{\bf{0020}}}\\{.{\bf{1190}}}&{.{\bf{0901}}}&{.{\bf{0996}}}&{.{\bf{1260}}}&{.{\bf{1722}}}&{.{\bf{2368}}}&{.{\bf{3369}}}\\{.{\bf{0063}}}&{.{\bf{0126}}}&{.{\bf{0196}}}&{.{\bf{0098}}}&{.{\bf{0064}}}&{.{\bf{0132}}}&{.{\bf{0012}}}\end{array}} \right]\), \({\bf{d}} = \left[ {\begin{array}{*{20}{c}}{{\bf{74,000}}}\\{{\bf{56,000}}}\\{{\bf{10,500}}}\\{{\bf{25,000}}}\\{{\bf{17,500}}}\\{{\bf{196,000}}}\\{{\bf{5,000}}}\end{array}} \right]\)

Short Answer

Expert verified

\({\bf{x}} = \left( {10000,98000,51000,132000,49000,330000,14000} \right)\)

Step by step solution

01

Find the matrix \[I - C\]

Use the following MATLAB code to calculate \(I - C\).

\( > > I = \left[ \begin{array}{l}\begin{array}{*{20}{c}}1&0&0&0&0&0&{0;\,\,}\end{array}\begin{array}{*{20}{c}}0&1&0&0&0&0&{0;\,\,}\end{array}\begin{array}{*{20}{c}}0&0&1&0&0&0&{0;\,\,}\end{array}\\\begin{array}{*{20}{c}}0&0&0&1&0&0&{0;\,\,}\end{array}\begin{array}{*{20}{c}}0&0&0&0&1&0&{0;\,\,}\end{array}\begin{array}{*{20}{c}}0&0&0&0&0&1&{0;\,\,}\end{array}\\\begin{array}{*{20}{c}}0&0&0&0&0&0&{1;\,\,}\end{array}\end{array} \right]\)

\[ > > C = \left[ \begin{array}{l}\begin{array}{*{20}{c}}{.1588}&{.0064}&{.0025}&{.0304}&{.0014}&{.0083}&{.1594;\,\,}\end{array}\\\begin{array}{*{20}{c}}{.0057}&{0.2645}&{0.0436}&{.0099}&{.0083}&{.0201}&{0.3413;}\end{array}\\\begin{array}{*{20}{c}}{.0264}&{.1506}&{.3557}&{.0139}&{.0142}&{.0070}&{.0236;\,\,\,}\end{array}\\\begin{array}{*{20}{c}}{.3299}&{.0565}&{.0495}&{.3636}&{.0204}&{.0483}&{.0649;}\end{array}\\\begin{array}{*{20}{c}}{.0089}&{.0081}&{.0333}&{.0295}&{0.3412}&{.0237}&{.0020;\;}\end{array}\\\;\begin{array}{*{20}{c}}{.1190}&{0.0901}&{.09966}&{.1260}&{.1722}&{.2368}&{.3369;}\end{array}\\\begin{array}{*{20}{c}}{.0063}&{.0126}&{.0196}&{.0098}&{.0064}&{.0132}&{.0012}\end{array}\end{array} \right]\]

\( > > I - C\)

\[I - C = \left[ {\begin{array}{*{20}{c}}{.8412}&{ - 0.0064}&{ - 0.0025}&{ - 0.0304}&{ - 0.0014}&{ - 0.0083}&{ - 0.1594}\\{ - .0057}&{0.7355}&{ - 0.0436}&{ - 0.0099}&{ - 0.0083}&{ - 0.0201}&{ - 0.3413}\\{ - .0264}&{ - 0.1506}&{0.6443}&{ - 0.0139}&{ - 0.0142}&{ - 0.0070}&{ - 0.0236}\\{ - .3299}&{ - 0.0565}&{ - 0.0495}&{0.6364}&{ - 0.0204}&{ - 0.0483}&{ - 0.0649}\\{ - .0089}&{ - 0.0081}&{ - 0.0333}&{ - 0.0295}&{0.6588}&{ - 0.0237}&{ - 0.0020}\\{ - 0.1190}&{ - 0.0901}&{ - 0.0996}&{ - 0.1260}&{ - 0.1722}&{0.7632}&{ - 0.3369}\\{ - 0.0063}&{ - 0.0126}&{ - 0.0196}&{ - 0.0098}&{ - 0.0064}&{ - 0.0132}&{0.9988}\end{array}} \right]\]

02

Write the augmented matrix \(\left[ {\begin{array}{*{20}{c}}{I - C}&{\bf{d}}\end{array}} \right]\)

\[\left[ {\begin{array}{*{20}{c}}{I - C}&{\bf{d}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{.8412}&{ - 0.0064}&{ - 0.0025}&{ - 0.0304}&{ - 0.0014}&{ - 0.0083}&{ - 0.1594}\\{ - .0057}&{0.7355}&{ - 0.0436}&{ - 0.0099}&{ - 0.0083}&{ - 0.0201}&{ - 0.3413}\\{ - .0264}&{ - 0.1506}&{0.6443}&{ - 0.0139}&{ - 0.0142}&{ - 0.0070}&{ - 0.0236}\\{ - .3299}&{ - 0.0565}&{ - 0.0495}&{0.6364}&{ - 0.0204}&{ - 0.0483}&{ - 0.0649}\\{ - .0089}&{ - 0.0081}&{ - 0.0333}&{ - 0.0295}&{0.6588}&{ - 0.0237}&{ - 0.0020}\\{ - 0.1190}&{ - 0.0901}&{ - 0.0996}&{ - 0.1260}&{ - 0.1722}&{0.7632}&{ - 0.3369}\\{ - 0.0063}&{ - 0.0126}&{ - 0.0196}&{ - 0.0098}&{ - 0.0064}&{ - 0.0132}&{0.9988}\end{array}}&{\begin{array}{*{20}{c}}{74000}\\{56000}\\{10500}\\{25000}\\{17500}\\{196000}\\{5000}\end{array}}\end{array}\,} \right]\]

03

Convert the matrix into row-reduced echelon form

Consider the following:

\(A = \left[ {\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{.8412}&{ - 0.0064}&{ - 0.0025}&{ - 0.0304}&{ - 0.0014}&{ - 0.0083}&{ - 0.1594}\\{ - .0057}&{0.7355}&{ - 0.0436}&{ - 0.0099}&{ - 0.0083}&{ - 0.0201}&{ - 0.3413}\\{ - .0264}&{ - 0.1506}&{0.6443}&{ - 0.0139}&{ - 0.0142}&{ - 0.0070}&{ - 0.0236}\\{ - .3299}&{ - 0.0565}&{ - 0.0495}&{0.6364}&{ - 0.0204}&{ - 0.0483}&{ - 0.0649}\\{ - .0089}&{ - 0.0081}&{ - 0.0333}&{ - 0.0295}&{0.6588}&{ - 0.0237}&{ - 0.0020}\\{ - 0.1190}&{ - 0.0901}&{ - 0.0996}&{ - 0.1260}&{ - 0.1722}&{0.7632}&{ - 0.3369}\\{ - 0.0063}&{ - 0.0126}&{ - 0.0196}&{ - 0.0098}&{ - 0.0064}&{ - 0.0132}&{0.9988}\end{array}}&{\begin{array}{*{20}{c}}{74000}\\{56000}\\{10500}\\{25000}\\{17500}\\{196000}\\{5000}\end{array}}\end{array}\,} \right]\)

Use the code in MATLAB to obtain the row-reducedechelon form, as shown below:

\[\begin{array}{l} > > {\rm{ A }} = {\rm{ }} > > C = \left[ \begin{array}{l}\begin{array}{*{20}{c}}{.8412}&{ - .0064}&{ - .0025}&{ - .0304}&{ - .0014}&{ - .0083}&{ - .1594\,\,\,74000;\,\,}\end{array}\\\begin{array}{*{20}{c}}{ - .0057}&{0.7355}&{ - 0.0436}&{ - .0099}&{ - .0083}&{ - .0201}&{ - 0.3413\,\,56000;}\end{array}\\ - \begin{array}{*{20}{c}}{.0264}&{ - .1506}&{.6443}&{ - .0139}&{ - .0142}&{ - .0070}&{ - .0236\,\,\,\,10500;\,\,\,}\end{array}\\\begin{array}{*{20}{c}}{ - .3299}&{ - .0565}&{ - .0495}&{.6364}&{ - .0204}&{ - .0483}&{ - .0649\,\,\,\,\,25000;}\end{array}\\\begin{array}{*{20}{c}}{ - .0089}&{ - .0081}&{ - .0333}&{ - .0295}&{0.6588}&{ - .0237}&{ - .0020\,\,\,17500;\;}\end{array}\\\;\begin{array}{*{20}{c}}{ - .1190}&{ - 0.0901}&{ - .09966}&{ - .1260}&{ - .1722}&{.7632}&{ - .3369\,\,\,196000;}\end{array}\\\begin{array}{*{20}{c}}{ - .0063}&{ - .0126}&{ - .0196}&{ - .0098}&{ - .0064}&{ - .0132}&{0.9988\,\,\,\,\,5000;}\end{array}\end{array} \right];\\ > > {\rm{ U}} = {\rm{rref}}\left( {\rm{A}} \right)\end{array}\]

\(\left[ {\begin{array}{*{20}{c}}1&0&0&0&0&0&0&{99576}\\0&1&0&0&0&0&0&{97703}\\0&0&1&0&0&0&0&{51231}\\0&0&0&1&0&0&0&{131570}\\0&0&0&0&1&0&0&{49488}\\0&0&0&0&0&1&0&{329554}\\0&0&0&0&0&0&1&{13835}\end{array}} \right]\)

04

Find the production level

The production level for the seven categories is

\(x\left( {\begin{array}{*{20}{c}}{99576}&{97703}&{51231}&{131570}&{49488}&{329554}&{13835}\end{array}} \right)\).

The entries of \({\bf{x}}\) suggest greater precision when approximated to the nearest thousand. So, the realistic answer is

\({\bf{x}} = \left( {100000,98000,51000,132000,49000,330000,14000} \right)\).

So, the production level of seven categories is \({\bf{x}} = \left( {100000,98000,51000,132000,49000,330000,14000} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

When a deep space probe launched, corrections may be necessary to place the probe on a precisely calculated trajectory. Radio elementary provides a stream of vectors, \({{\bf{x}}_{\bf{1}}},....,{{\bf{x}}_k}\), giving information at different times about how the probe’s position compares with its planned trajectory. Let \({X_k}\) be the matrix \(\left[ {{x_{\bf{1}}}.....{x_k}} \right]\). The matrix \({G_k} = {X_k}X_k^T\) is computed as the radar data are analyzed. When \({x_{k + {\bf{1}}}}\) arrives, a new \({G_{k + {\bf{1}}}}\) must be computed. Since the data vector arrive at high speed, the computational burden could be serve. But partitioned matrix multiplication helps tremendously. Compute the column-row expansions of \({G_k}\) and \({G_{k + {\bf{1}}}}\) and describe what must be computed in order to update \({G_k}\) to \({G_{k + {\bf{1}}}}\).

Suppose a linear transformation \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) has the property that \(T\left( {\mathop{\rm u}\nolimits} \right) = T\left( {\mathop{\rm v}\nolimits} \right)\) for some pair of distinct vectors u and v in \({\mathbb{R}^n}\). Can Tmap \({\mathbb{R}^n}\) onto \({\mathbb{R}^n}\)? Why or why not?

Suppose \({A_{{\bf{11}}}}\) is invertible. Find \(X\) and \(Y\) such that

\[\left[ {\begin{array}{*{20}{c}}{{A_{{\bf{11}}}}}&{{A_{{\bf{12}}}}}\\{{A_{{\bf{21}}}}}&{{A_{{\bf{22}}}}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\X&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{A_{{\bf{11}}}}}&{\bf{0}}\\{\bf{0}}&S\end{array}} \right]\left[ {\begin{array}{*{20}{c}}I&Y\\{\bf{0}}&I\end{array}} \right]\]

Where \(S = {A_{{\bf{22}}}} - {A_{21}}A_{{\bf{11}}}^{ - {\bf{1}}}{A_{{\bf{12}}}}\). The matrix \(S\) is called the Schur complement of \({A_{{\bf{11}}}}\). Likewise, if \({A_{{\bf{22}}}}\) is invertible, the matrix \({A_{{\bf{11}}}} - {A_{{\bf{12}}}}A_{{\bf{22}}}^{ - {\bf{1}}}{A_{{\bf{21}}}}\) is called the Schur complement of \({A_{{\bf{22}}}}\). Such expressions occur frequently in the theory of systems engineering, and elsewhere.

Suppose Tand U are linear transformations from \({\mathbb{R}^n}\) to \({\mathbb{R}^n}\) such that \(T\left( {U{\mathop{\rm x}\nolimits} } \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\) . Is it true that \(U\left( {T{\mathop{\rm x}\nolimits} } \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\)? Why or why not?

Let \(A = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}&{ - {\bf{3}}}\\{ - {\bf{4}}}&{\bf{6}}\end{aligned}} \right)\) and \(B = \left( {\begin{aligned}{*{20}{c}}{\bf{8}}&{\bf{4}}\\{\bf{5}}&{\bf{5}}\end{aligned}} \right)\) and \(C = \left( {\begin{aligned}{*{20}{c}}{\bf{5}}&{ - {\bf{2}}}\\{\bf{3}}&{\bf{1}}\end{aligned}} \right)\). Verfiy that \(AB = AC\) and yet \(B \ne C\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free