[M] The demand vector in Exercise 13 is reasonable for 1958 data, but Leontief’s discussion of the economy in the reference cited there used a demand vector closer to 1964 data:

\({\bf{d}} = \left( {{\bf{99640}},\,{\bf{75548}},\,{\bf{14444}},\,{\bf{33501}},\,{\bf{23527}},\,{\bf{263985}},\,{\bf{6526}}} \right)\)

Find the production level needed to satisfy the demand.

Short Answer

Expert verified

\({\bf{x}} = \left( {134000,132000,69000,177000,67000,444000,18000} \right)\)

Step by step solution

01

Write the matrix in the \[I - C\] form

\[I - C = \left[ {\begin{array}{*{20}{c}}{.8412}&{ - 0.0064}&{ - 0.0025}&{ - 0.0304}&{ - 0.0014}&{ - 0.0083}&{ - 0.1594}\\{ - .0057}&{0.7355}&{ - 0.0436}&{ - 0.0099}&{ - 0.0083}&{ - 0.0201}&{ - 0.3413}\\{ - .0264}&{ - 0.1506}&{0.6443}&{ - 0.0139}&{ - 0.0142}&{ - 0.0070}&{ - 0.0236}\\{ - .3299}&{ - 0.0565}&{ - 0.0495}&{0.6364}&{ - 0.0204}&{ - 0.0483}&{ - 0.0649}\\{ - .0089}&{ - 0.0081}&{ - 0.0333}&{ - 0.0295}&{0.6588}&{ - 0.0237}&{ - 0.0020}\\{ - 0.1190}&{ - 0.0901}&{ - 0.0996}&{ - 0.1260}&{ - 0.1722}&{0.7632}&{ - 0.3369}\\{ - 0.0063}&{ - 0.0126}&{ - 0.0196}&{ - 0.0098}&{ - 0.0064}&{ - 0.0132}&{0.9988}\end{array}} \right]\]

02

Write the augmented matrix \(\left[ {\begin{array}{*{20}{c}}{I - C}&{\bf{d}}\end{array}} \right]\)

\[\left[ {\begin{array}{*{20}{c}}{I - C}&{\bf{d}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{.8412}&{ - 0.0064}&{ - 0.0025}&{ - 0.0304}&{ - 0.0014}&{ - 0.0083}&{ - 0.1594}\\{ - .0057}&{0.7355}&{ - 0.0436}&{ - 0.0099}&{ - 0.0083}&{ - 0.0201}&{ - 0.3413}\\{ - .0264}&{ - 0.1506}&{0.6443}&{ - 0.0139}&{ - 0.0142}&{ - 0.0070}&{ - 0.0236}\\{ - .3299}&{ - 0.0565}&{ - 0.0495}&{0.6364}&{ - 0.0204}&{ - 0.0483}&{ - 0.0649}\\{ - .0089}&{ - 0.0081}&{ - 0.0333}&{ - 0.0295}&{0.6588}&{ - 0.0237}&{ - 0.0020}\\{ - 0.1190}&{ - 0.0901}&{ - 0.0996}&{ - 0.1260}&{ - 0.1722}&{0.7632}&{ - 0.3369}\\{ - 0.0063}&{ - 0.0126}&{ - 0.0196}&{ - 0.0098}&{ - 0.0064}&{ - 0.0132}&{0.9988}\end{array}}&{\begin{array}{*{20}{c}}{99640}\\{75548}\\{14444}\\{33501}\\{23527}\\{263985}\\{6526}\end{array}}\end{array}\,} \right]\]

03

Convert the matrix into row-reduced echelon form

Consider the following:

\(A = \left[ {\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{.8412}&{ - 0.0064}&{ - 0.0025}&{ - 0.0304}&{ - 0.0014}&{ - 0.0083}&{ - 0.1594}\\{ - .0057}&{0.7355}&{ - 0.0436}&{ - 0.0099}&{ - 0.0083}&{ - 0.0201}&{ - 0.3413}\\{ - .0264}&{ - 0.1506}&{0.6443}&{ - 0.0139}&{ - 0.0142}&{ - 0.0070}&{ - 0.0236}\\{ - .3299}&{ - 0.0565}&{ - 0.0495}&{0.6364}&{ - 0.0204}&{ - 0.0483}&{ - 0.0649}\\{ - .0089}&{ - 0.0081}&{ - 0.0333}&{ - 0.0295}&{0.6588}&{ - 0.0237}&{ - 0.0020}\\{ - 0.1190}&{ - 0.0901}&{ - 0.0996}&{ - 0.1260}&{ - 0.1722}&{0.7632}&{ - 0.3369}\\{ - 0.0063}&{ - 0.0126}&{ - 0.0196}&{ - 0.0098}&{ - 0.0064}&{ - 0.0132}&{0.9988}\end{array}}&{\begin{array}{*{20}{c}}{99640}\\{75548}\\{14444}\\{33501}\\{23527}\\{263985}\\{6526}\end{array}}\end{array}\,} \right]\)

Use the code in MATLAB to obtain the row-reducedechelon form, as shown below:

\[\begin{array}{l} > > {\rm{ A }} = {\rm{ }} > > C = \left[ \begin{array}{l}\begin{array}{*{20}{c}}{.8412}&{ - .0064}&{ - .0025}&{ - .0304}&{ - .0014}&{ - .0083}&{ - .1594\,\,\,99640;\,\,}\end{array}\\\begin{array}{*{20}{c}}{ - .0057}&{0.7355}&{ - 0.0436}&{ - .0099}&{ - .0083}&{ - .0201}&{ - 0.3413\,\,75548;}\end{array}\\ - \begin{array}{*{20}{c}}{.0264}&{ - .1506}&{.6443}&{ - .0139}&{ - .0142}&{ - .0070}&{ - .0236\,\,\,\,14444;\,\,\,}\end{array}\\\begin{array}{*{20}{c}}{ - .3299}&{ - .0565}&{ - .0495}&{.6364}&{ - .0204}&{ - .0483}&{ - .0649\,\,\,\,\,33501;}\end{array}\\\begin{array}{*{20}{c}}{ - .0089}&{ - .0081}&{ - .0333}&{ - .0295}&{0.6588}&{ - .0237}&{ - .0020\,\,\,23527;\;}\end{array}\\\;\begin{array}{*{20}{c}}{ - .1190}&{ - 0.0901}&{ - .09966}&{ - .1260}&{ - .1722}&{.7632}&{ - .3369\,\,\,263985;}\end{array}\\\begin{array}{*{20}{c}}{ - .0063}&{ - .0126}&{ - .0196}&{ - .0098}&{ - .0064}&{ - .0132}&{0.9988\,\,\,\,\,6526;}\end{array}\end{array} \right];\\ > > {\rm{ U}} = {\rm{rref}}\left( {\rm{A}} \right)\end{array}\]

\(\left[ {\begin{array}{*{20}{c}}1&0&0&0&0&0&0&{134034}\\0&1&0&0&0&0&0&{131687}\\0&0&1&0&0&0&0&{69472}\\0&0&0&1&0&0&0&{176912}\\0&0&0&0&1&0&0&{66596}\\0&0&0&0&0&1&0&{443773}\\0&0&0&0&0&0&1&{18431}\end{array}} \right]\)

04

Find the production level

The production level for the seven categories is

\(x\left( {\begin{array}{*{20}{c}}{134034}&{131687}&{69472}&{176912}&{66596}&{443773}&{18431}\end{array}} \right)\).

The entries of \({\bf{x}}\) suggest greater precision when approximated to the nearest thousand. So, the realistic answer is

\({\bf{x}} = \left( {134000,132000,69000,177000,67000,444000,18000} \right)\).

So, the production level of seven categories is \({\bf{x}} = \left( {134000,132000,69000,177000,67000,444000,18000} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \({{\bf{r}}_1} \ldots ,{{\bf{r}}_p}\) be vectors in \({\mathbb{R}^{\bf{n}}}\), and let Qbe an\(m \times n\)matrix. Write the matrix\(\left( {\begin{aligned}{*{20}{c}}{Q{{\bf{r}}_1}}& \cdots &{Q{{\bf{r}}_p}}\end{aligned}} \right)\)as a productof two matrices (neither of which is an identity matrix).

Suppose P is invertible and \(A = PB{P^{ - 1}}\). Solve for Bin terms of A.

A useful way to test new ideas in matrix algebra, or to make conjectures, is to make calculations with matrices selected at random. Checking a property for a few matrices does not prove that the property holds in general, but it makes the property more believable. Also, if the property is actually false, you may discover this when you make a few calculations.

38. Use at least three pairs of random \(4 \times 4\) matrices Aand Bto test the equalities \({\left( {A + B} \right)^T} = {A^T} + {B^T}\) and \({\left( {AB} \right)^T} = {A^T}{B^T}\). (See Exercise 37.) Report your conclusions. (Note:Most matrix programs use \(A'\) for \({A^{\bf{T}}}\).

A useful way to test new ideas in matrix algebra, or to make conjectures, is to make calculations with matrices selected at random. Checking a property for a few matrices does not prove that the property holds in general, but it makes the property more believable. Also, if the property is actually false, you may discover this when you make a few calculations.

36. Write the command(s) that will create a \(6 \times 4\) matrix with random entries. In what range of numbers do the entries lie? Tell how to create a \(3 \times 3\) matrix with random integer entries between \( - {\bf{9}}\) and 9. (Hint:If xis a random number such that 0 < x < 1, then \( - 9.5 < 19\left( {x - .5} \right) < 9.5\).

The inverse of \(\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}&{\bf{0}}\\C&I&{\bf{0}}\\A&B&I\end{array}} \right]\) is \(\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}&{\bf{0}}\\Z&I&{\bf{0}}\\X&Y&I\end{array}} \right]\). Find X, Y, and Z.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free