Consider the following geometric 2D transformations: D, a dilation (in which x-coordinates and y-coordinates are scaled by the same factor); R, a rotation; and T a translation. Does D commute with R? That is, is \(D\left( {R\left( {\bf{x}} \right)} \right) = R\left( {D\left( {\bf{x}} \right)} \right)\)for all \({\bf{x}}\) in \({\mathbb{R}^{\bf{2}}}\)? Does D commute with T? Does R commute with T?

Short Answer

Expert verified

D commutes with R, and matrices D and R do not commute with T.

Step by step solution

01

Write the transformation matrix for dilation, rotation, and translation

Let the transformation matrices in homogenous coordinates for dilation, rotation and translation be

\(D = \left[ {\begin{array}{*{20}{c}}s&0&0\\0&s&0\\0&0&1\end{array}} \right]\), \(R = \left[ {\begin{array}{*{20}{c}}{\cos \phi }&{ - \sin \phi }&0\\{\sin \phi }&{\cos \phi }&0\\0&0&1\end{array}} \right]\), and \(T = \left[ {\begin{array}{*{20}{c}}1&0&h\\0&1&k\\0&0&1\end{array}} \right]\).

02

Compute the product of transformation matrices

Calculate the value of \(DR\).

\(DR = \left[ {\begin{array}{*{20}{c}}{s\cos \phi }&{ - s\sin \phi }&0\\{s\sin \phi }&{s\cos \phi }&0\\0&0&1\end{array}} \right]\)

Calculate the value of \(RD\).

\[RD = \left[ {\begin{array}{*{20}{c}}{s\cos \phi }&{ - s\sin \phi }&0\\{s\sin \phi }&{s\cos \phi }&0\\0&0&1\end{array}} \right]\]

Calculate the value of \(DT\).

\(DT = \left[ {\begin{array}{*{20}{c}}s&0&{sh}\\0&s&{sk}\\0&0&1\end{array}} \right]\)

Calculate the value of \(TD\).

\(TD = \left[ {\begin{array}{*{20}{c}}s&0&h\\0&s&k\\0&0&1\end{array}} \right]\)

Calculate the value of \(RT\).

\(RT = \left[ {\begin{array}{*{20}{c}}{\cos \phi }&{ - \sin \phi }&{h\cos \phi - k\sin \phi }\\{\sin \phi }&{\cos \phi }&{h\sin \phi + k\cos \phi }\\0&0&1\end{array}} \right]\)

Calculate the value of \(TR\).

\(TR = \left[ {\begin{array}{*{20}{c}}{\cos \varphi }&{ - \sin \varphi }&h\\{\sin \varphi }&{\cos \varphi }&k\\0&0&1\end{array}} \right]\)

03

Check the commutation of transformation matrices

For the transformation matrices, \(DR = RD\).

So, D commutes with R.

\(DT \ne TD\)

So, D does not commute with T.

And

\(RT \ne TR\)

So, R does not commute with T.

Hence, D commutes with R, and matrices D and R do not commute with T.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose Ais an \(n \times n\) matrix with the property that the equation \(Ax = 0\)has only the trivial solution. Without using the Invertible Matrix Theorem, explain directly why the equation \(Ax = b\) must have a solution for each b in \({\mathbb{R}^n}\).

Suppose \({A_{{\bf{11}}}}\) is an invertible matrix. Find matrices Xand Ysuch that the product below has the form indicated. Also,compute \({B_{{\bf{22}}}}\). [Hint:Compute the product on the left, and setit equal to the right side.]

\[\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}&{\bf{0}}\\X&I&{\bf{0}}\\Y&{\bf{0}}&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{A_{{\bf{1}}1}}}&{{A_{{\bf{1}}2}}}\\{{A_{{\bf{2}}1}}}&{{A_{{\bf{2}}2}}}\\{{A_{{\bf{3}}1}}}&{{A_{{\bf{3}}2}}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{{B_{11}}}&{{B_{12}}}\\{\bf{0}}&{{B_{22}}}\\{\bf{0}}&{{B_{32}}}\end{array}} \right]\]

Let \(A = \left( {\begin{aligned}{*{20}{c}}1&1&1\\1&2&3\\1&4&5\end{aligned}} \right)\), and \(D = \left( {\begin{aligned}{*{20}{c}}2&0&0\\0&3&0\\0&0&5\end{aligned}} \right)\). Compute \(AD\) and \(DA\). Explain how the columns or rows of A change when A is multiplied by D on the right or on the left. Find a \(3 \times 3\) matrix B, not the identity matrix or the zero matrix, such that \(AB = BA\).

Use partitioned matrices to prove by induction that for \(n = 2,3,...\), the \(n \times n\) matrices \(A\) shown below is invertible and \(B\) is its inverse.

\[A = \left[ {\begin{array}{*{20}{c}}1&0&0& \cdots &0\\1&1&0&{}&0\\1&1&1&{}&0\\ \vdots &{}&{}& \ddots &{}\\1&1&1& \ldots &1\end{array}} \right]\]

\[B = \left[ {\begin{array}{*{20}{c}}1&0&0& \cdots &0\\{ - 1}&1&0&{}&0\\0&{ - 1}&1&{}&0\\ \vdots &{}& \ddots & \ddots &{}\\0&{}& \ldots &{ - 1}&1\end{array}} \right]\]

For the induction step, assume A and Bare \(\left( {k + 1} \right) \times \left( {k + 1} \right)\) matrices, and partition Aand B in a form similar to that displayed in Exercises 23.

In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. Compute the products shown in Exercises 1–4.

2. \[\left[ {\begin{array}{*{20}{c}}E&{\bf{0}}\\{\bf{0}}&F\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&B\\C&D\end{array}} \right]\]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free