In Exercises 3-8, find the \({\bf{3}} \times {\bf{3}}\) matrices that produce the described composite 2D transformations, using homogenous coordinates.

Rotate points through \({\bf{45}}^\circ \) about the point \(\left( {{\bf{3}},{\bf{7}}} \right)\).

Short Answer

Expert verified

\(\left[ {\begin{array}{*{20}{c}}{\frac{{\sqrt 2 }}{2}}&{ - \frac{{\sqrt 2 }}{2}}&{3 + 2\sqrt 2 }\\{\frac{{\sqrt 2 }}{2}}&{\frac{{\sqrt 2 }}{2}}&{7 - 5\sqrt 2 }\\0&0&1\end{array}} \right]\)

Step by step solution

01

Find the matrix for translation

The point \(\left( {3,7} \right)\) must be shifted back to the origin.

The translation matrix is

\(\left[ {\begin{array}{*{20}{c}}1&0&{ - 3}\\0&1&{ - 7}\\0&0&1\end{array}} \right]\).

02

Find the matrix for rotation

The matrix for rotation by \(45^\circ \) is

\(\left[ {\begin{array}{*{20}{c}}{\cos 45^\circ }&{ - \sin 45^\circ }&0\\{\sin 45^\circ }&{\cos 45^\circ }&0\\0&0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 2 }}}&{ - \frac{1}{{\sqrt 2 }}}&0\\{\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}&0\\0&0&1\end{array}} \right]\).

03

Find the matrix for translation

The point must again be shifted back to \(\left( {3,7} \right)\). The translation matrix is

\(\left[ {\begin{array}{*{20}{c}}1&0&3\\0&1&7\\0&0&1\end{array}} \right]\).

04

Find the combined matrix of transformation

The combined matrix for transformation can be expressed as

\(\left[ {\begin{array}{*{20}{c}}1&0&3\\0&1&7\\0&0&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 2 }}}&{ - \frac{1}{{\sqrt 2 }}}&0\\{\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}&0\\0&0&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&0&{ - 3}\\0&1&{ - 7}\\0&0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\frac{{\sqrt 2 }}{2}}&{ - \frac{{\sqrt 2 }}{2}}&{3 + 2\sqrt 2 }\\{\frac{{\sqrt 2 }}{2}}&{\frac{{\sqrt 2 }}{2}}&{7 - 5\sqrt 2 }\\0&0&1\end{array}} \right]\).

So, the transformed matrix is \(\left[ {\begin{array}{*{20}{c}}{\frac{{\sqrt 2 }}{2}}&{ - \frac{{\sqrt 2 }}{2}}&{3 + 2\sqrt 2 }\\{\frac{{\sqrt 2 }}{2}}&{\frac{{\sqrt 2 }}{2}}&{7 - 5\sqrt 2 }\\0&0&1\end{array}} \right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose a linear transformation \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) has the property that \(T\left( {\mathop{\rm u}\nolimits} \right) = T\left( {\mathop{\rm v}\nolimits} \right)\) for some pair of distinct vectors u and v in \({\mathbb{R}^n}\). Can Tmap \({\mathbb{R}^n}\) onto \({\mathbb{R}^n}\)? Why or why not?

Suppose \({A_{{\bf{11}}}}\) is an invertible matrix. Find matrices Xand Ysuch that the product below has the form indicated. Also,compute \({B_{{\bf{22}}}}\). [Hint:Compute the product on the left, and setit equal to the right side.]

\[\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}&{\bf{0}}\\X&I&{\bf{0}}\\Y&{\bf{0}}&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{A_{{\bf{1}}1}}}&{{A_{{\bf{1}}2}}}\\{{A_{{\bf{2}}1}}}&{{A_{{\bf{2}}2}}}\\{{A_{{\bf{3}}1}}}&{{A_{{\bf{3}}2}}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{{B_{11}}}&{{B_{12}}}\\{\bf{0}}&{{B_{22}}}\\{\bf{0}}&{{B_{32}}}\end{array}} \right]\]

Suppose Ais an \(n \times n\) matrix with the property that the equation \[A{\mathop{\rm x}\nolimits} = 0\] has at least one solution for each b in \({\mathbb{R}^n}\). Without using Theorem 5 or 8, explain why each equation Ax = b has in fact exactly one solution.

Let \(A = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{2}}\\{\bf{5}}&{{\bf{12}}}\end{aligned}} \right),{b_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{1}}}\\{\bf{3}}\end{aligned}} \right),{b_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}\\{ - {\bf{5}}}\end{aligned}} \right),{b_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}\\{\bf{6}}\end{aligned}} \right),\) and \({b_{\bf{4}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{3}}\\{\bf{5}}\end{aligned}} \right)\).

  1. Find \({A^{ - {\bf{1}}}}\), and use it to solve the four equations \(Ax = {b_{\bf{1}}},\)\(Ax = {b_2},\)\(Ax = {b_{\bf{3}}},\)\(Ax = {b_{\bf{4}}}\)\(\)
  2. The four equations in part (a) can be solved by the same set of row operations, since the coefficient matrix is the same in each case. Solve the four equations in part (a) by row reducing the augmented matrix \(\left( {\begin{aligned}{*{20}{c}}A&{{b_{\bf{1}}}}&{{b_{\bf{2}}}}&{{b_{\bf{3}}}}&{{b_{\bf{4}}}}\end{aligned}} \right)\).

Prove the Theorem 3(d) i.e., \({\left( {AB} \right)^T} = {B^T}{A^T}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free