First, solve the equation \[Ax = 0\].
Its augmented matrix is:
\[\left[ {\begin{array}{*{20}{c}}A&0\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&2&3&0\\4&5&7&0\\{ - 5}&{ - 1}&0&0\\2&7&{11}&0\end{array}} \right]\]
At row 2, multiply row 1 by 4 and subtract it from row 2, i.e., \[{R_2} \to {R_2} - 4{R_1}\], at row 3. Multiply row 1 by 5 and add it to row 3, i.e., \[{R_3} \to {R_3} + 5{R_1}\], and at row 4, multiply row 1 by 2 and subtract it from row 4, i.e., \[{R_4} \to {R_4} - 2{R_1}\]. Therefore,
\[ \sim \left[ {\begin{array}{*{20}{c}}1&2&3&0\\0&{ - 3}&{ - 5}&0\\0&9&{15}&0\\0&3&5&0\end{array}} \right]\]
At row 3, multiply row 2 by 3 and add it to row 3, i.e., \[{R_3} \to {R_3} + 3{R_2}\], and at row 4, add row 2 to row 4, i.e., \[{R_4} \to {R_4} + {R_2}\]. Therefore,
\[ \sim \left[ {\begin{array}{*{20}{c}}1&2&3&0\\0&{ - 3}&{ - 5}&0\\0&0&0&0\\0&0&0&0\end{array}} \right]\]
At row 2, divide row 2 by -3.
\[ \sim \left[ {\begin{array}{*{20}{c}}1&2&3&0\\0&1&{{5 \mathord{\left/
{\vphantom {5 3}} \right.
\kern-\nulldelimiterspace} 3}}&0\\0&0&0&0\\0&0&0&0\end{array}} \right]\]
This implies that
\[\begin{array}{c}{x_1} + 2{x_2} + 3{x_3} = 0\\{x_2} + {5 \mathord{\left/
{\vphantom {5 3}} \right.
\kern-\nulldelimiterspace} 3}{x_3} = 0\\0 = 0\end{array}\]
Thus, the system is consistent.