7: Let \({{\mathop{\rm v}\nolimits} _1} = \left[ {\begin{array}{*{20}{c}}2\\{ - 8}\\6\end{array}} \right]\), \({{\mathop{\rm v}\nolimits} _2} = \left[ {\begin{array}{*{20}{c}}{ - 3}\\8\\{ - 7}\end{array}} \right]\), \({{\mathop{\rm v}\nolimits} _3} = \left[ {\begin{array}{*{20}{c}}{ - 4}\\6\\{ - 7}\end{array}} \right]\), \({\mathop{\rm p}\nolimits} = \left[ {\begin{array}{*{20}{c}}6\\{ - 10}\\{11}\end{array}} \right]\), and\(A = \left[ {\begin{array}{*{20}{c}}{{{\mathop{\rm v}\nolimits} _1}}&{{{\mathop{\rm v}\nolimits} _2}}&{{{\mathop{\rm v}\nolimits} _3}}\end{array}} \right]\).

  1. How many vectors are in \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}} \right\}\)?
  2. How many vectors are in Col A?
  3. Is p in Col A? Why or why not?

Short Answer

Expert verified

a. The set \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}} \right\}\)contains three vectors: \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},\) and \({{\mathop{\rm v}\nolimits} _3}\).

b. Span\(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}} \right\} = {\mathop{\rm Col}\nolimits} \,\,A\) contains an infinite number of vectors.

c.p is in Col A.

Step by step solution

01

Determine the number of vectors in \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}} \right\}\)

(a)

The set \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}} \right\}\)contains three vectors: \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},\) and \({{\mathop{\rm v}\nolimits} _3}\).

02

Determine the number of vectors in Col A

Span\(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}} \right\} = {\mathop{\rm Col}\nolimits} \,\,A\) contains an infinite number of vectors.

03

Write matrix A in the form \(\left[ {\begin{array}{*{20}{c}}{{{\mathop{\rm v}\nolimits} _1}}&{{{\mathop{\rm v}\nolimits} _2}}&{{{\mathop{\rm v}\nolimits} _3}}\end{array}} \right]\)

(c)

Vector p is alinear combination of the columns of A if and only if b can be written as Ax for some x, that is, if and only if the equation \(Ax = b\) has asolution.

Write matrix A in the form \(\left[ {\begin{array}{*{20}{c}}{{{\mathop{\rm v}\nolimits} _1}}&{{{\mathop{\rm v}\nolimits} _2}}&{{{\mathop{\rm v}\nolimits} _3}}\end{array}} \right]\), as shown below:

\(A = \left[ {\begin{array}{*{20}{c}}2&{ - 3}&{ - 4}\\{ - 8}&8&6\\6&{ - 7}&{ - 7}\end{array}} \right]\)

04

Write the augmented matrix

The augmented matrix \(\left[ {\begin{array}{*{20}{c}}A&{\mathop{\rm p}\nolimits} \end{array}} \right]\) is shown below:

\(\left[ {\begin{array}{*{20}{c}}A&{\mathop{\rm p}\nolimits} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}}2&{ - 3}&{ - 4}&6\\{ - 8}&8&6&{ - 10}\\6&{ - 7}&{ - 7}&{11}\end{array}} \right]\)

05

Apply the row operation

At row two, multiply row one by 4 and add it to row two. At row three, multiply row one by 3 and subtract it from row three.

\[ \sim \left[ {\begin{array}{*{20}{c}}2&{ - 3}&{ - 4}&6\\0&{ - 4}&{ - 10}&{14}\\0&2&5&{ - 7}\end{array}} \right]\]

At row three, multiply row three by 2 and add it to row two.

\[ \sim \left[ {\begin{array}{*{20}{c}}2&{ - 3}&{ - 4}&6\\0&{ - 4}&{ - 10}&{14}\\0&0&0&0\end{array}} \right]\]

06

Determine whether p is in Col A

Thecolumn spaceof matrix A is the set Col A of all linear combinationsof the columns of A.

Mark the pivot column in the row echelon form of the matrix

.

Since the equation \(A{\mathop{\rm x}\nolimits} = p\) has a solution, p is in Col A.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercise 10 mark each statement True or False. Justify each answer.

10. a. A product of invertible \(n \times n\) matrices is invertible, and the inverse of the product of their inverses in the same order.

b. If A is invertible, then the inverse of \({A^{ - {\bf{1}}}}\) is A itself.

c. If \(A = \left( {\begin{aligned}{*{20}{c}}a&b\\c&d\end{aligned}} \right)\) and \(ad = bc\), then A is not invertible.

d. If A can be row reduced to the identity matrix, then A must be invertible.

e. If A is invertible, then elementary row operations that reduce A to the identity \({I_n}\) also reduce \({A^{ - {\bf{1}}}}\) to \({I_n}\).

In exercise 5 and 6, compute the product \(AB\) in two ways: (a) by the definition, where \(A{b_{\bf{1}}}\) and \(A{b_{\bf{2}}}\) are computed separately, and (b) by the row-column rule for computing \(AB\).

\(A = \left( {\begin{aligned}{*{20}{c}}{\bf{4}}&{ - {\bf{2}}}\\{ - {\bf{3}}}&{\bf{0}}\\{\bf{3}}&{\bf{5}}\end{aligned}} \right)\), \(B = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{3}}\\{\bf{2}}&{ - {\bf{1}}}\end{aligned}} \right)\)

In Exercises 1 and 2, compute each matrix sum or product if it is defined. If an expression is undefined, explain why. Let

\(A = \left( {\begin{aligned}{*{20}{c}}2&0&{ - 1}\\4&{ - 5}&2\end{aligned}} \right)\), \(B = \left( {\begin{aligned}{*{20}{c}}7&{ - 5}&1\\1&{ - 4}&{ - 3}\end{aligned}} \right)\), \(C = \left( {\begin{aligned}{*{20}{c}}1&2\\{ - 2}&1\end{aligned}} \right)\), \(D = \left( {\begin{aligned}{*{20}{c}}3&5\\{ - 1}&4\end{aligned}} \right)\) and \(E = \left( {\begin{aligned}{*{20}{c}}{ - 5}\\3\end{aligned}} \right)\)

\( - 2A\), \(B - 2A\), \(AC\), \(CD\).

Solve the equation \(AB = BC\) for A, assuming that A, B, and C are square and Bis invertible.

Suppose AB = AC, where Band Care \(n \times p\) matrices and A is invertible. Show that B = C. Is this true, in general, when A is not invertible.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free