9: With A and p as in Exercise 7, determine if p is in Nul A.

Short Answer

Expert verified

p is not in Nul A.

Step by step solution

01

State the values of A and p as in Exercise 7

Let \({{\mathop{\rm v}\nolimits} _1} = \left[ {\begin{array}{*{20}{c}}2\\{ - 8}\\6\end{array}} \right],{{\mathop{\rm v}\nolimits} _2} = \left[ {\begin{array}{*{20}{c}}{ - 3}\\8\\{ - 7}\end{array}} \right],{{\mathop{\rm v}\nolimits} _3} = \left[ {\begin{array}{*{20}{c}}{ - 4}\\6\\{ - 7}\end{array}} \right],{\mathop{\rm p}\nolimits} = \left[ {\begin{array}{*{20}{c}}6\\{ - 10}\\{11}\end{array}} \right]\), and \(A = \left[ {\begin{array}{*{20}{c}}{{{\mathop{\rm v}\nolimits} _1}}&{{{\mathop{\rm v}\nolimits} _2}}&{{{\mathop{\rm v}\nolimits} _3}}\end{array}} \right]\).

02

Write matrix A using the vectors

Write matrix A in the form \[\left[ {\begin{array}{*{20}{c}}{{{\mathop{\rm v}\nolimits} _1}}&{{{\mathop{\rm v}\nolimits} _2}}&{{{\mathop{\rm v}\nolimits} _3}}\end{array}} \right]\], as shown below:

\(A = \left[ {\begin{array}{*{20}{c}}2&{ - 3}&{ - 4}\\{ - 8}&8&6\\6&{ - 7}&{ - 7}\end{array}} \right]\)

03

Determine whether p is in Nul A

The null spaceof matrix A is the set Nul Aof all solutions of the homogeneous equation\(Ax = 0\).

Calculate \(A{\mathop{\rm p}\nolimits} \), as shown below:

\(\begin{array}{c}A{\mathop{\rm p}\nolimits} = \left[ {\begin{array}{*{20}{c}}2&{ - 3}&{ - 4}\\{ - 8}&8&6\\6&{ - 7}&{ - 7}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}6\\{ - 10}\\{11}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{12 + 30 - 44}\\{ - 48 - 80 + 66}\\{36 + 70 - 77}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{ - 2}\\{ - 62}\\{29}\end{array}} \right]\end{array}\)

Since \[A{\mathop{\rm p}\nolimits} \ne 0\], p is not in Nul A.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In the rest of this exercise set and in those to follow, you should assume that each matrix expression is defined. That is, the sizes of the matrices (and vectors) involved match appropriately.

Let \(A = \left( {\begin{aligned}{*{20}{c}}{\bf{4}}&{ - {\bf{1}}}\\{\bf{5}}&{ - {\bf{2}}}\end{aligned}} \right)\). Compute \({\bf{3}}{I_{\bf{2}}} - A\) and \(\left( {{\bf{3}}{I_{\bf{2}}}} \right)A\).

Prove the Theorem 3(d) i.e., \({\left( {AB} \right)^T} = {B^T}{A^T}\).

In Exercises 1 and 2, compute each matrix sum or product if it is defined. If an expression is undefined, explain why. Let

\(A = \left( {\begin{aligned}{*{20}{c}}2&0&{ - 1}\\4&{ - 5}&2\end{aligned}} \right)\), \(B = \left( {\begin{aligned}{*{20}{c}}7&{ - 5}&1\\1&{ - 4}&{ - 3}\end{aligned}} \right)\), \(C = \left( {\begin{aligned}{*{20}{c}}1&2\\{ - 2}&1\end{aligned}} \right)\), \(D = \left( {\begin{aligned}{*{20}{c}}3&5\\{ - 1}&4\end{aligned}} \right)\) and \(E = \left( {\begin{aligned}{*{20}{c}}{ - 5}\\3\end{aligned}} \right)\)

\( - 2A\), \(B - 2A\), \(AC\), \(CD\).

Use partitioned matrices to prove by induction that for \(n = 2,3,...\), the \(n \times n\) matrices \(A\) shown below is invertible and \(B\) is its inverse.

\[A = \left[ {\begin{array}{*{20}{c}}1&0&0& \cdots &0\\1&1&0&{}&0\\1&1&1&{}&0\\ \vdots &{}&{}& \ddots &{}\\1&1&1& \ldots &1\end{array}} \right]\]

\[B = \left[ {\begin{array}{*{20}{c}}1&0&0& \cdots &0\\{ - 1}&1&0&{}&0\\0&{ - 1}&1&{}&0\\ \vdots &{}& \ddots & \ddots &{}\\0&{}& \ldots &{ - 1}&1\end{array}} \right]\]

For the induction step, assume A and Bare \(\left( {k + 1} \right) \times \left( {k + 1} \right)\) matrices, and partition Aand B in a form similar to that displayed in Exercises 23.

Suppose P is invertible and \(A = PB{P^{ - 1}}\). Solve for Bin terms of A.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free