Exercises 9–12 display a matrix Aand an echelon form of A. Find bases for Col Aand Nul A, and then state the dimensions of these subspaces.

\(A = \left[ {\begin{array}{*{20}{c}}1&2&{ - 4}&3&3\\5&{10}&{ - 9}&{ - 7}&8\\4&8&{ - 9}&{ - 2}&7\\{ - 2}&{ - 4}&5&0&{ - 6}\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&2&{ - 4}&3&3\\0&0&1&{ - 2}&0\\0&0&0&0&{ - 5}\\0&0&0&0&0\end{array}} \right]\)a

Short Answer

Expert verified

The bases for Col A are \(\left\{ {\left[ {\begin{array}{*{20}{c}}1\\5\\4\\{ - 2}\end{array}} \right],\left[ {\begin{array}{*{20}{c}}{ - 4}\\{ - 9}\\{ - 9}\\5\end{array}} \right],\left[ {\begin{array}{*{20}{c}}3\\8\\7\\{ - 6}\end{array}} \right]} \right\}\). The bases for Nul A are \(\left\{ {\left[ {\begin{array}{*{20}{c}}{ - 2}\\1\\0\\0\\0\end{array}} \right],\left[ {\begin{array}{*{20}{c}}5\\0\\2\\1\\0\end{array}} \right]} \right\}\). The dimension of Col A is 3. The dimension of Nul A is 2.

Step by step solution

01

Bases for Nul A and Col A

The set of all linear combinations of the columns of matrix A is Col A, or it is called the column space of A. Pivot columns are the bases for Col A.

The set of all homogeneous equation solutions\(A{\bf{x}} = 0\)is Nul A, or it is called the null space of A.

02

Write the bases for Col A

To identify the pivot and the pivot position, observe the matrix’s leftmost column (nonzero column), which is the pivot column. At the top of this column, 1 is the pivot.

It is observed that the first, third, and fifth columns have pivot elements.

The corresponding columns of matrix A are shown below:

\(\left[ {\begin{array}{*{20}{c}}1\\5\\4\\{ - 2}\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}{ - 4}\\{ - 9}\\{ - 9}\\5\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}3\\8\\7\\{ - 6}\end{array}} \right]\)

The column space is given as shown below:

\({\rm{Col }}A = \left\{ {\left[ {\begin{array}{*{20}{c}}1\\5\\4\\{ - 2}\end{array}} \right],\left[ {\begin{array}{*{20}{c}}{ - 4}\\{ - 9}\\{ - 9}\\5\end{array}} \right],\left[ {\begin{array}{*{20}{c}}3\\8\\7\\{ - 6}\end{array}} \right]} \right\}\)

Thus, the bases for Col A are \(\left\{ {\left[ {\begin{array}{*{20}{c}}1\\5\\4\\{ - 2}\end{array}} \right],\left[ {\begin{array}{*{20}{c}}{ - 4}\\{ - 9}\\{ - 9}\\5\end{array}} \right],\left[ {\begin{array}{*{20}{c}}3\\8\\7\\{ - 6}\end{array}} \right]} \right\}\).

03

Write the bases for Nul A

It is given that there are 5 columns in the given matrix, which means there should be 5 entries in vector x.

Thus, the equation \(A{\bf{x}} = 0\) can be written as shown below:

\(\begin{array}{c}Ax = 0\\\left[ {\begin{array}{*{20}{c}}1&2&{ - 4}&3&3\\0&0&1&{ - 2}&0\\0&0&0&0&{ - 5}\\0&0&0&0&0\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\\{{x_5}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}0\\0\\0\\0\end{array}} \right]\end{array}\)

The augmented matrix is shown below:

\(\left[ {\begin{array}{*{20}{c}}1&2&{ - 4}&3&3&0\\0&0&1&{ - 2}&0&0\\0&0&0&0&{ - 5}&0\\0&0&0&0&0&0\end{array}} \right]\)

Multiply row 3 by \( - \frac{1}{5}\).

\(\left[ {\begin{array}{*{20}{c}}1&2&{ - 4}&3&3&0\\0&0&1&{ - 2}&0&0\\0&0&0&0&{ - 5}&0\\0&0&0&0&0&0\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&2&{ - 4}&3&3&0\\0&0&1&{ - 2}&0&0\\0&0&0&0&1&0\\0&0&0&0&0&0\end{array}} \right]\)

Add \( - 3\) times row 3 to row 1.

\(\left[ {\begin{array}{*{20}{c}}1&2&{ - 4}&3&3&0\\0&0&1&{ - 2}&0&0\\0&0&0&0&1&0\\0&0&0&0&0&0\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&2&{ - 4}&3&0&0\\0&0&1&{ - 2}&0&0\\0&0&0&0&1&0\\0&0&0&0&0&0\end{array}} \right]\)

Add 4 times row 2 to row 1.

\(\left[ {\begin{array}{*{20}{c}}1&2&{ - 4}&3&0&0\\0&0&1&{ - 2}&0&0\\0&0&0&0&1&0\\0&0&0&0&0&0\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&2&0&{ - 5}&0&0\\0&0&1&{ - 2}&0&0\\0&0&0&0&1&0\\0&0&0&0&0&0\end{array}} \right]\)

So, the system of equations is as shown below:

\(\begin{array}{c}{x_1} + 2{x_2} - 5{x_4} = 0\\{x_3} - 2{x_4} = 0\\{x_5} = 0\end{array}\)

From the above equations, \({x_1}\), \({x_3}\), and \({x_5}\) correspond to the pivot positions. So, \({x_1}\), \({x_3}\), and \({x_5}\) are the basic variables, and \({x_2}\)and \({x_4}\) are the free variables.

Let \({x_2} = a\), \({x_4} = b\).

Substitute the values \({x_2} = a\) and \({x_4} = b\) in the equation \({x_1} + 2{x_2} - 5{x_4} = 0\) to obtain the general solution.

\(\begin{array}{c}{x_1} + 2\left( a \right) - 5\left( b \right) = 0\\{x_1} = - 2a + 5b\end{array}\)

Substitute the value \({x_4} = b\) in the equation \({x_3} - 2{x_4} = 0\) to obtain the general solution.

\(\begin{array}{c}{x_3} - 2\left( b \right) = 0\\{x_3} = 2b\end{array}\)

Obtain the vector in the parametric form by using \({x_1} = - 2a + 5b\), \({x_2} = a\), \({x_3} = 2b\), \({x_4} = b\), and \({x_5} = 0\).

\[\begin{array}{c}\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\\{{x_5}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ - 2a + 5b}\\a\\{2b}\\b\\0\end{array}} \right]\\ = a\left[ {\begin{array}{*{20}{c}}{ - 2}\\1\\0\\0\\0\end{array}} \right] + b\left[ {\begin{array}{*{20}{c}}5\\0\\2\\1\\0\end{array}} \right]\\ = {x_3}\left[ {\begin{array}{*{20}{c}}{ - 2}\\1\\0\\0\\0\end{array}} \right] + {x_5}\left[ {\begin{array}{*{20}{c}}5\\0\\2\\1\\0\end{array}} \right]\end{array}\]

Nul A is shown below:

\({\rm{Nul }}A = \left\{ {\left[ {\begin{array}{*{20}{c}}{ - 2}\\1\\0\\0\\0\end{array}} \right],\left[ {\begin{array}{*{20}{c}}5\\0\\2\\1\\0\end{array}} \right]} \right\}\)

Thus, the bases for Nul A are \(\left\{ {\left[ {\begin{array}{*{20}{c}}{ - 2}\\1\\0\\0\\0\end{array}} \right],\left[ {\begin{array}{*{20}{c}}5\\0\\2\\1\\0\end{array}} \right]} \right\}\).

04

Dimensions of subspaces

It is observed that matrix A has 3 pivot columns; so the dimension of Col A is 3. Thus, Col A= 3.

Also, it is observed that the homogeneous equation \(A{\bf{x}} = 0\) has two free variables; so the dimension of Nul A is 2. Thus, Nul A= 2.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(M) Read the documentation for your matrix program, and write the commands that will produce the following matrices (without keying in each entry of the matrix).

  1. A \({\bf{5}} \times {\bf{6}}\) matrix of zeros
  2. A \({\bf{3}} \times {\bf{5}}\) matrix of ones
  3. The \({\bf{6}} \times {\bf{6}}\) identity matrix
  4. A \({\bf{5}} \times {\bf{5}}\) diagonal matrix, with diagonal entries 3, 5, 7, 2, 4

Let \({{\bf{r}}_1} \ldots ,{{\bf{r}}_p}\) be vectors in \({\mathbb{R}^{\bf{n}}}\), and let Qbe an\(m \times n\)matrix. Write the matrix\(\left( {\begin{aligned}{*{20}{c}}{Q{{\bf{r}}_1}}& \cdots &{Q{{\bf{r}}_p}}\end{aligned}} \right)\)as a productof two matrices (neither of which is an identity matrix).

2. Find the inverse of the matrix \(\left( {\begin{aligned}{*{20}{c}}{\bf{3}}&{\bf{2}}\\{\bf{7}}&{\bf{4}}\end{aligned}} \right)\).

If \(A = \left( {\begin{aligned}{*{20}{c}}1&{ - 2}\\{ - 2}&5\end{aligned}} \right)\) and \(AB = \left( {\begin{aligned}{*{20}{c}}{ - 1}&2&{ - 1}\\6&{ - 9}&3\end{aligned}} \right)\), determine the first and second column of B.

A useful way to test new ideas in matrix algebra, or to make conjectures, is to make calculations with matrices selected at random. Checking a property for a few matrices does not prove that the property holds in general, but it makes the property more believable. Also, if the property is actually false, you may discover this when you make a few calculations.

36. Write the command(s) that will create a \(6 \times 4\) matrix with random entries. In what range of numbers do the entries lie? Tell how to create a \(3 \times 3\) matrix with random integer entries between \( - {\bf{9}}\) and 9. (Hint:If xis a random number such that 0 < x < 1, then \( - 9.5 < 19\left( {x - .5} \right) < 9.5\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free