Chapter 2: Q2.9-29E (page 93)
[M] Let \(H = {\bf{span}}\left\{ {{{\bf{v}}_1},{{\bf{v}}_2}} \right\}\) and \({\rm B} = \left\{ {{{\bf{v}}_{\bf{1}}},{{\bf{v}}_{\bf{2}}}} \right\}\). Show that \(x\) is in H, and find the \(\beta - \)coordinate vector of x, when
\({{\bf{v}}_{\bf{1}}} = \left[ {\begin{array}{*{20}{c}}{{\bf{11}}}\\{ - {\bf{5}}}\\{{\bf{10}}}\\{\bf{7}}\end{array}} \right]\), \({{\bf{v}}_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{{\bf{14}}}\\{ - {\bf{8}}}\\{{\bf{13}}}\\{{\bf{10}}}\end{array}} \right]\), \({\bf{x}} = \left[ {\begin{array}{*{20}{c}}{{\bf{19}}}\\{ - {\bf{13}}}\\{{\bf{18}}}\\{{\bf{15}}}\end{array}} \right]\)
Short Answer
The \(\beta - \)coordinates of \({\bf{x}}\) are \(\left( { - \frac{5}{3},\frac{8}{3}} \right)\).