Chapter 2: Q2.9-30E (page 93)
[M] Let \(H = {\bf{span}}\left\{ {{{\bf{v}}_{\bf{1}}},{{\bf{v}}_{\bf{2}}},{{\bf{v}}_{\bf{3}}}} \right\}\) and \({\rm B} = \left\{ {{{\bf{v}}_{\bf{1}}},{{\bf{v}}_{\bf{2}}},{{\bf{v}}_{\bf{3}}}} \right\}\). Show that \(B\)is a basis for \(H\)and \(x\) is in H, and find the \({\rm B} - \)coordinate vector of x, when
\({{\bf{v}}_{\bf{1}}} = \left[ {\begin{array}{*{20}{c}}{ - {\bf{6}}}\\{\bf{4}}\\{ - {\bf{9}}}\\{\bf{4}}\end{array}} \right]\), \({{\bf{v}}_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{8}}\\{ - {\bf{3}}}\\{\bf{7}}\\{ - {\bf{3}}}\end{array}} \right]\), \({{\bf{v}}_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{ - {\bf{9}}}\\{\bf{5}}\\{ - {\bf{8}}}\\{\bf{3}}\end{array}} \right]\), \({\bf{x}} = \left[ {\begin{array}{*{20}{c}}{\bf{4}}\\{\bf{7}}\\{ - {\bf{8}}}\\{\bf{3}}\end{array}} \right]\)
Short Answer
The \(\beta - \)coordinates of \({\bf{x}}\) are \(\left( {3,5,2} \right)\).