[M] Let \(H = {\bf{span}}\left\{ {{{\bf{v}}_{\bf{1}}},{{\bf{v}}_{\bf{2}}},{{\bf{v}}_{\bf{3}}}} \right\}\) and \({\rm B} = \left\{ {{{\bf{v}}_{\bf{1}}},{{\bf{v}}_{\bf{2}}},{{\bf{v}}_{\bf{3}}}} \right\}\). Show that \(B\)is a basis for \(H\)and \(x\) is in H, and find the \({\rm B} - \)coordinate vector of x, when

\({{\bf{v}}_{\bf{1}}} = \left[ {\begin{array}{*{20}{c}}{ - {\bf{6}}}\\{\bf{4}}\\{ - {\bf{9}}}\\{\bf{4}}\end{array}} \right]\), \({{\bf{v}}_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{8}}\\{ - {\bf{3}}}\\{\bf{7}}\\{ - {\bf{3}}}\end{array}} \right]\), \({{\bf{v}}_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{ - {\bf{9}}}\\{\bf{5}}\\{ - {\bf{8}}}\\{\bf{3}}\end{array}} \right]\), \({\bf{x}} = \left[ {\begin{array}{*{20}{c}}{\bf{4}}\\{\bf{7}}\\{ - {\bf{8}}}\\{\bf{3}}\end{array}} \right]\)

Short Answer

Expert verified

The \(\beta - \)coordinates of \({\bf{x}}\) are \(\left( {3,5,2} \right)\).

Step by step solution

01

Form a matrix using the vectors

The matrix formed using the column vectors is

\(A = \left[ {\begin{array}{*{20}{c}}{ - 6}&8&{ - 9}&4\\4&{ - 3}&5&7\\{ - 9}&7&{ - 8}&{ - 8}\\4&{ - 3}&3&3\end{array}} \right]\).

02

Convert the matrix into the row-reduced echelon form

Consider matrix \(A = \left[ {\begin{array}{*{20}{c}}{ - 6}&8&{ - 9}&4\\4&{ - 3}&5&7\\{ - 9}&7&{ - 8}&{ - 8}\\4&{ - 3}&3&3\end{array}} \right]\).

Use the code in MATLAB to obtain the row-reducedechelon form as shown below:

\[\begin{array}{l} > > {\rm{ A }} = {\rm{ }}\left[ {{\rm{ }}\begin{array}{*{20}{c}}{ - 6}&8&{ - 9}&{4;\,\,\begin{array}{*{20}{c}}4&{ - 3}&5&{7;\,\,\begin{array}{*{20}{c}}{ - 9}&7&{ - 8}&{ - 8;\,\,\begin{array}{*{20}{c}}4&{ - 3}&3&3\end{array}}\end{array}}\end{array}}\end{array}} \right];\\ > > {\rm{ U}} = {\rm{rref}}\left( {\rm{A}} \right)\end{array}\]

\(\left[ {\begin{array}{*{20}{c}}{ - 6}&8&{ - 9}&4\\4&{ - 3}&5&7\\{ - 9}&7&{ - 8}&{ - 8}\\4&{ - 3}&3&3\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&0&0&3\\0&1&0&5\\0&0&1&2\\0&0&0&0\end{array}} \right]\)

03

Find the coordinates

Columns \({{\bf{v}}_1}\), \({{\bf{v}}_2}\), and \({{\bf{v}}_3}\) form basis \(B\) for the subspace H in which they span.

The equation \({c_1}{{\bf{v}}_1} + {c_2}{{\bf{v}}_2} + {c_2}{{\bf{v}}_3} = {\bf{x}}\) is consistent. The values of \({c_1}\), \({c_2}\), and \({c_3}\) from the echelon form are \({c_1} = 3\), \({c_2} = 5\), and \({c_3} = 2\).

So, the \(\beta - \)coordinates of \({\bf{x}}\) are \(\left( {3,5,2} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If \(A = \left( {\begin{aligned}{*{20}{c}}1&{ - 2}\\{ - 2}&5\end{aligned}} \right)\) and \(AB = \left( {\begin{aligned}{*{20}{c}}{ - 1}&2&{ - 1}\\6&{ - 9}&3\end{aligned}} \right)\), determine the first and second column of B.

a. Verify that \({A^2} = I\) when \(A = \left[ {\begin{array}{*{20}{c}}1&0\\3&{ - 1}\end{array}} \right]\).

b. Use partitioned matrices to show that \({M^2} = I\) when\(M = \left[ {\begin{array}{*{20}{c}}1&0&0&0\\3&{ - 1}&0&0\\1&0&{ - 1}&0\\0&1&{ - 3}&1\end{array}} \right]\).

Use partitioned matrices to prove by induction that for \(n = 2,3,...\), the \(n \times n\) matrices \(A\) shown below is invertible and \(B\) is its inverse.

\[A = \left[ {\begin{array}{*{20}{c}}1&0&0& \cdots &0\\1&1&0&{}&0\\1&1&1&{}&0\\ \vdots &{}&{}& \ddots &{}\\1&1&1& \ldots &1\end{array}} \right]\]

\[B = \left[ {\begin{array}{*{20}{c}}1&0&0& \cdots &0\\{ - 1}&1&0&{}&0\\0&{ - 1}&1&{}&0\\ \vdots &{}& \ddots & \ddots &{}\\0&{}& \ldots &{ - 1}&1\end{array}} \right]\]

For the induction step, assume A and Bare \(\left( {k + 1} \right) \times \left( {k + 1} \right)\) matrices, and partition Aand B in a form similar to that displayed in Exercises 23.

[M] Suppose memory or size restrictions prevent your matrix program from working with matrices having more than 32 rows and 32 columns, and suppose some project involves \(50 \times 50\) matrices A and B. Describe the commands or operations of your program that accomplish the following tasks.

a. Compute \(A + B\)

b. Compute \(AB\)

c. Solve \(Ax = b\) for some vector b in \({\mathbb{R}^{50}}\), assuming that \(A\) can be partitioned into a \(2 \times 2\) block matrix \(\left[ {{A_{ij}}} \right]\), with \({A_{11}}\) an invertible \(20 \times 20\) matrix, \({A_{22}}\) an invertible \(30 \times 30\) matrix, and \({A_{12}}\) a zero matrix. [Hint: Describe appropriate smaller systems to solve, without using any matrix inverse.]

In Exercises 33 and 34, Tis a linear transformation from \({\mathbb{R}^2}\) into \({\mathbb{R}^2}\). Show that T is invertible and find a formula for \({T^{ - 1}}\).

34. \(T\left( {{x_1},{x_2}} \right) = \left( {6{x_1} - 8{x_2}, - 5{x_1} + 7{x_2}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free