Chapter 2: Q2.9-3Q (page 93)
In Exercises 3–6, the vector x is in a subspace Hwith a basis \(B = \left\{ {{b_{\bf{1}}},{{\bf{b}}_{\bf{2}}}} \right\}\). Find the B-coordinate vector of x.
3. \[{b_1} = \left[ {\begin{array}{*{20}{c}}1\\{ - 4}\end{array}} \right]\], \[{b_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{ - 2}\\7\end{array}} \right]\], \[{\bf{x}} = \left[ {\begin{array}{*{20}{c}}{ - {\bf{3}}}\\7\end{array}} \right]\]
Short Answer
TheB-coordinate vector of x is \({\left[ {\bf{x}} \right]_B} = \left[ {\begin{array}{*{20}{c}}7\\5\end{array}} \right]\).