Use the\({x_1}\)term in the first equation to eliminate the\( - 3{x_1}\)term from the third equation. Add 3 times row 1 to row 3.
\(\left[ {\begin{array}{*{20}{c}}1&{ - 3}&4\\5&{ - 7}&{10}\\{ - 3}&5&{ - 7}\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&{ - 3}&4\\5&{ - 7}&{10}\\0&{ - 4}&5\end{array}} \right]\)
Use the\({x_1}\)term in the first equation to eliminate the\(5{x_1}\)term from the second equation. Add\( - 5\)times row 1 to row 2.
\[\left[ {\begin{array}{*{20}{c}}1&{ - 3}&4\\5&{ - 7}&{10}\\0&{ - 4}&5\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&{ - 3}&4\\0&8&{ - 10}\\0&{ - 4}&5\end{array}} \right]\]
Multiply row 2 by 2, and then add row 2 and row 3 to eliminate \( - 4{x_2}\) from the third equation.
\[\left[ {\begin{array}{*{20}{c}}1&{ - 3}&4\\0&8&{ - 10}\\0&{ - 4}&5\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&{ - 3}&4\\0&4&{ - 5}\\0&0&0\end{array}} \right]\]
Multiply row 2 by \(\frac{1}{4}\).
\[\left[ {\begin{array}{*{20}{c}}1&{ - 3}&4\\0&4&{ - 5}\\0&0&0\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&{ - 3}&4\\0&1&{ - 5/4}\\0&0&0\end{array}} \right]\]
Use the\({x_2}\)term in the second equation to eliminate the\( - 3{x_2}\)term from the second equation. Add\(3\)times row 2 to row 1.
\[\left[ {\begin{array}{*{20}{c}}1&{ - 3}&4\\0&1&{ - 5/4}\\0&0&0\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&0&{1/4}\\0&1&{ - 5/4}\\0&0&0\end{array}} \right]\]
Thus, the weights are \({c_1} = \frac{1}{4}\)and \({c_2} = - \frac{5}{4}\).
Obtain the B-coordinate vector of x.
\({\left[ {\bf{x}} \right]_B} = \left[ {\begin{array}{*{20}{c}}{{c_1}}\\{{c_2}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{1/4}\\{ - 5/4}\end{array}} \right]\)
Thus, the B-coordinate vector of x is \({\left[ {\bf{x}} \right]_B} = \left[ {\begin{array}{*{20}{c}}{1/4}\\{ - 5/4}\end{array}} \right]\).