Find the inverse of matrices in Exercise 29-32, if they exist. Use the algorithm introduced in this section.

\(\left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{0}}&{ - {\bf{2}}}\\{ - {\bf{3}}}&{\bf{1}}&{\bf{4}}\\{\bf{2}}&{ - {\bf{3}}}&{\bf{4}}\end{aligned}} \right)\)

Short Answer

Expert verified

\(\left( {\begin{aligned}{*{20}{c}}8&3&1\\{10}&4&1\\{\frac{7}{2}}&{\frac{3}{2}}&{\frac{1}{2}}\end{aligned}} \right)\)

Step by step solution

01

Find the expression \(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right)\)

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&0&{ - 2}\\{ - 3}&1&4\\2&{ - 3}&4\end{aligned}\,\,\,\begin{aligned}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{aligned}} \right)\)

02

Apply the row operation to the matrix \(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right)\)

At row three, multiply row one by 2 and subtract it from row three, i.e., \({R_3} \to {R_3} - 2{R_1}\).

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&0&{ - 2}\\{ - 3}&1&4\\0&{ - 3}&8\end{aligned}\,\,\,\begin{aligned}{*{20}{c}}1&0&0\\0&1&0\\{ - 2}&0&1\end{aligned}} \right)\)

03

Apply row operation to the matrix \(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right)\)

At row two, multiply row one by 3 and add it to row two, i.e., \({R_2} \to {R_2} + 3{R_1}\).

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&0&{ - 2}\\0&1&{ - 2}\\0&{ - 3}&8\end{aligned}\,\,\,\begin{aligned}{*{20}{c}}1&0&0\\3&1&0\\{ - 2}&0&1\end{aligned}} \right)\)

04

Apply row operation to the matrix \(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right)\)

At row three, multiple row two by 3 and add it to row three, i.e., \({R_3} \to {R_3} + 3{R_2}\).

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&0&{ - 2}\\0&1&{ - 2}\\0&0&2\end{aligned}\,\,\,\begin{aligned}{*{20}{c}}1&0&0\\3&1&0\\7&3&1\end{aligned}} \right)\)

05

Apply row operation to the matrix \(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right)\)

At row two, add rows two and three, i.e., \({R_2} \to {R_2} + {R_3}\).

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&0&{ - 2}\\0&1&0\\0&0&2\end{aligned}\,\,\,\begin{aligned}{*{20}{c}}1&0&0\\{10}&4&1\\7&3&1\end{aligned}} \right)\)

06

Apply row operation to the matrix \(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right)\)

At row one, add rows three and one, i.e., \({R_1} \to {R_1} + {R_2}\).

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&0&0\\0&1&0\\0&0&2\end{aligned}\,\,\,\begin{aligned}{*{20}{c}}8&3&1\\{10}&4&1\\7&3&1\end{aligned}} \right)\)

Divide row three by 2, i.e., \({R_3} \to \frac{{{R_3}}}{2}\).

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{aligned}\,\,\,\begin{aligned}{*{20}{c}}8&3&1\\{10}&4&1\\{\frac{7}{2}}&{\frac{3}{2}}&{\frac{1}{2}}\end{aligned}} \right)\)

So, the inverse of the matrix is \(\left( {\begin{aligned}{*{20}{c}}8&3&1\\{10}&4&1\\{\frac{7}{2}}&{\frac{3}{2}}&{\frac{1}{2}}\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In the rest of this exercise set and in those to follow, you should assume that each matrix expression is defined. That is, the sizes of the matrices (and vectors) involved match appropriately.

Compute \(A - {\bf{5}}{I_{\bf{3}}}\) and \(\left( {{\bf{5}}{I_{\bf{3}}}} \right)A\)

\(A = \left( {\begin{aligned}{*{20}{c}}{\bf{9}}&{ - {\bf{1}}}&{\bf{3}}\\{ - {\bf{8}}}&{\bf{7}}&{ - {\bf{6}}}\\{ - {\bf{4}}}&{\bf{1}}&{\bf{8}}\end{aligned}} \right)\)

In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. Compute the products shown in Exercises 1–4.

3. \[\left[ {\begin{array}{*{20}{c}}{\bf{0}}&I\\I&{\bf{0}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}W&X\\Y&Z\end{array}} \right]\]

Let \(A = \left( {\begin{aligned}{*{20}{c}}3&{ - 6}\\{ - 1}&2\end{aligned}} \right)\). Construct a \({\bf{2}} \times {\bf{2}}\) matrix Bsuch that ABis the zero matrix. Use two different nonzero columns for B.

Exercises 15 and 16 concern arbitrary matrices A, B, and Cfor which the indicated sums and products are defined. Mark each statement True or False. Justify each answer.

16. a. If A and B are \({\bf{3}} \times {\bf{3}}\) and \(B = \left( {\begin{aligned}{*{20}{c}}{{{\bf{b}}_1}}&{{{\bf{b}}_2}}&{{{\bf{b}}_3}}\end{aligned}} \right)\), then \(AB = \left( {A{{\bf{b}}_1} + A{{\bf{b}}_2} + A{{\bf{b}}_3}} \right)\).

b. The second row of ABis the second row of Amultiplied on the right by B.

c. \(\left( {AB} \right)C = \left( {AC} \right)B\)

d. \({\left( {AB} \right)^T} = {A^T}{B^T}\)

e. The transpose of a sum of matrices equals the sum of their transposes.

Suppose Tand Ssatisfy the invertibility equations (1) and (2), where T is a linear transformation. Show directly that Sis a linear transformation. [Hint: Given u, v in \({\mathbb{R}^n}\), let \[{\mathop{\rm x}\nolimits} = S\left( {\mathop{\rm u}\nolimits} \right),{\mathop{\rm y}\nolimits} = S\left( {\mathop{\rm v}\nolimits} \right)\]. Then \(T\left( {\mathop{\rm x}\nolimits} \right) = {\mathop{\rm u}\nolimits} \), \[T\left( {\mathop{\rm y}\nolimits} \right) = {\mathop{\rm v}\nolimits} \]. Why? Apply Sto both sides of the equation \(T\left( {\mathop{\rm x}\nolimits} \right) + T\left( {\mathop{\rm y}\nolimits} \right) = T\left( {{\mathop{\rm x}\nolimits} + y} \right)\). Also, consider \(T\left( {cx} \right) = cT\left( x \right)\).]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free