Let \(A = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{2}}}&{ - {\bf{7}}}&{ - {\bf{9}}}\\{\bf{2}}&{\bf{5}}&{\bf{6}}\\{\bf{1}}&{\bf{3}}&{\bf{4}}\end{aligned}} \right)\). Find the third column of \({A^{ - {\bf{1}}}}\) without computing the other columns.

Short Answer

Expert verified

\(\left( {\begin{aligned}{*{20}{c}}3\\{ - 6}\\4\end{aligned}} \right)\)

Step by step solution

01

Find the expression \(\left( {\begin{aligned}{*{20}{c}}A&{{e_{\bf{3}}}}\end{aligned}} \right)\)

The expression \(\left( {\begin{aligned}{*{20}{c}}A&{{e_3}}\end{aligned}} \right)\) can be calculated as shown below:

\(\left( {\begin{aligned}{*{20}{c}}A&{{e_3}}\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}{ - 2}&{ - 7}&{ - 9}\\2&5&6\\1&3&4\end{aligned}\,\,\begin{aligned}{*{20}{c}}0\\0\\1\end{aligned}} \right)\)

02

Apply row operation to the matrix \(\left( {\begin{aligned}{*{20}{c}}A&{{e_{\bf{3}}}}\end{aligned}} \right)\)

Interchange rows one and three, i.e., \({R_1} \leftrightarrow {R_3}\).

\(\left( {\begin{aligned}{*{20}{c}}A&{{e_3}}\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&3&4\\2&5&6\\{ - 2}&{ - 7}&{ - 9}\end{aligned}\,\,\begin{aligned}{*{20}{c}}1\\0\\0\end{aligned}} \right)\)

For row three, multiply row one by 2 and add it to row three, i.e., \({R_3} \to {R_3} + 2{R_1}\).

\(\left( {\begin{aligned}{*{20}{c}}A&{{e_3}}\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&3&4\\2&5&6\\0&{ - 1}&{ - 1}\end{aligned}\,\,\begin{aligned}{*{20}{c}}1\\0\\2\end{aligned}} \right)\)

03

Apply row operation to the matrix \(\left( {\begin{aligned}{*{20}{c}}A&{{e_{\bf{3}}}}\end{aligned}} \right)\)

For row two, multiply row one by 2 and subtract it from row two, i.e., \({R_2} \to {R_2} - 2{R_1}\).

\(\left( {\begin{aligned}{*{20}{c}}A&{{e_3}}\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&3&4\\0&{ - 1}&{ - 2}\\0&{ - 1}&{ - 1}\end{aligned}\,\,\begin{aligned}{*{20}{c}}1\\{ - 2}\\2\end{aligned}} \right)\)

04

Apply row operation to the matrix \(\left( {\begin{aligned}{*{20}{c}}A&{{e_{\bf{3}}}}\end{aligned}} \right)\)

At row three, subtract row two from row three, i.e., \({R_3} \to {R_3} - {R_2}\).

\(\left( {\begin{aligned}{*{20}{c}}A&{{e_3}}\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&3&4\\0&{ - 1}&{ - 2}\\0&0&1\end{aligned}\,\,\begin{aligned}{*{20}{c}}1\\{ - 2}\\4\end{aligned}} \right)\)

05

Apply row operation to the matrix \(\left( {\begin{aligned}{*{20}{c}}A&{{e_{\bf{3}}}}\end{aligned}} \right)\)

At row two, multiply row two by 2 and add it to row two, i.e., \({R_2} \to {R_2} + 2{R_3}\).

\(\left( {\begin{aligned}{*{20}{c}}A&{{e_3}}\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&3&4\\0&{ - 1}&0\\0&0&1\end{aligned}\,\,\begin{aligned}{*{20}{c}}1\\6\\4\end{aligned}} \right)\)

06

Apply row operation to the matrix \(\left( {\begin{aligned}{*{20}{c}}A&{{e_{\bf{3}}}}\end{aligned}} \right)\)

At row one, multiply row three by 4 and subtract it from row one, i.e., \({R_1} \to {R_1} - 4{R_3}\).

\(\left( {\begin{aligned}{*{20}{c}}A&{{e_3}}\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&3&0\\0&{ - 1}&0\\0&0&1\end{aligned}\,\,\begin{aligned}{*{20}{c}}{ - 15}\\6\\4\end{aligned}} \right)\)

At row one, multiply row two by 3 and add it to row one, i.e., \({R_1} \to {R_1} + 3{R_2}\).

\(\left( {\begin{aligned}{*{20}{c}}A&{{e_3}}\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{ - 1}&0\\0&0&1\end{aligned}\,\,\begin{aligned}{*{20}{c}}3\\6\\4\end{aligned}} \right)\)

07

Apply row operation to the matrix \(\left( {\begin{aligned}{*{20}{c}}A&{{e_{\bf{3}}}}\end{aligned}} \right)\)

At row two, multiply row two by \( - 1\), i.e., \({R_2} \to - {R_2}\).

\(\left( {\begin{aligned}{*{20}{c}}A&{{e_3}}\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{aligned}\,\,\begin{aligned}{*{20}{c}}3\\{ - 6}\\4\end{aligned}} \right)\)

So, the third column of the inverse matrix is \(\left( {\begin{aligned}{*{20}{c}}3\\{ - 6}\\4\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. In Exercises 5–8, find formulas for X, Y, and Zin terms of A, B, and C, and justify your calculations. In some cases, you may need to make assumptions about the size of a matrix in order to produce a formula. [Hint:Compute the product on the left, and set it equal to the right side.]

7. \[\left[ {\begin{array}{*{20}{c}}X&{\bf{0}}&{\bf{0}}\\Y&{\bf{0}}&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&Z\\{\bf{0}}&{\bf{0}}\\B&I\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\{\bf{0}}&I\end{array}} \right]\]

In exercise 5 and 6, compute the product \(AB\) in two ways: (a) by the definition, where \(A{b_{\bf{1}}}\) and \(A{b_{\bf{2}}}\) are computed separately, and (b) by the row-column rule for computing \(AB\).

\(A = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{1}}}&{\bf{2}}\\{\bf{5}}&{\bf{4}}\\{\bf{2}}&{ - {\bf{3}}}\end{aligned}} \right)\), \(B = \left( {\begin{aligned}{*{20}{c}}{\bf{3}}&{ - {\bf{2}}}\\{ - {\bf{2}}}&{\bf{1}}\end{aligned}} \right)\)

A useful way to test new ideas in matrix algebra, or to make conjectures, is to make calculations with matrices selected at random. Checking a property for a few matrices does not prove that the property holds in general, but it makes the property more believable. Also, if the property is actually false, you may discover this when you make a few calculations.

37. Construct a random \({\bf{4}} \times {\bf{4}}\) matrix Aand test whether \(\left( {A + I} \right)\left( {A - I} \right) = {A^2} - I\). The best way to do this is to compute \(\left( {A + I} \right)\left( {A - I} \right) - \left( {{A^2} - I} \right)\) and verify that this difference is the zero matrix. Do this for three random matrices. Then test \(\left( {A + B} \right)\left( {A - B} \right) = {A^2} - {B^{\bf{2}}}\) the same way for three pairs of random \({\bf{4}} \times {\bf{4}}\) matrices. Report your conclusions.

In Exercise 9 mark each statement True or False. Justify each answer.

9. a. In order for a matrix B to be the inverse of A, both equations \(AB = I\) and \(BA = I\) must be true.

b. If A and B are \(n \times n\) and invertible, then \({A^{ - {\bf{1}}}}{B^{ - {\bf{1}}}}\) is the inverse of \(AB\).

c. If \(A = \left( {\begin{aligned}{*{20}{c}}a&b\\c&d\end{aligned}} \right)\) and \(ab - cd \ne {\bf{0}}\), then A is invertible.

d. If A is an invertible \(n \times n\) matrix, then the equation \(Ax = b\) is consistent for each b in \({\mathbb{R}^{\bf{n}}}\).

e. Each elementary matrix is invertible.

In Exercises 33 and 34, Tis a linear transformation from \({\mathbb{R}^2}\) into \({\mathbb{R}^2}\). Show that T is invertible and find a formula for \({T^{ - 1}}\).

34. \(T\left( {{x_1},{x_2}} \right) = \left( {6{x_1} - 8{x_2}, - 5{x_1} + 7{x_2}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free