3. Find the inverse of the matrix \(\left( {\begin{aligned}{*{20}{c}}{\bf{8}}&{\bf{5}}\\{ - {\bf{7}}}&{ - {\bf{5}}}\end{aligned}} \right)\).

Short Answer

Expert verified

The inverse of \(\left( {\begin{aligned}{*{20}{c}}8&5\\{ - 7}&{ - 5}\end{aligned}} \right)\) is \(\left( {\begin{aligned}{*{20}{c}}1&1\\{ - 1.4}&{ - 1.6}\end{aligned}} \right)\).

Step by step solution

01

Check if the matrix is invertible

\(\begin{aligned}{c}\det \left( {\left( {\begin{aligned}{*{20}{c}}8&5\\{ - 7}&{ - 5}\end{aligned}} \right)} \right) = 8\left( { - 5} \right) - 5\left( { - 7} \right)\\ = - 40 + 35\\\det \left( {\left( {\begin{aligned}{*{20}{c}}8&5\\{ - 7}&{ - 5}\end{aligned}} \right)} \right) = - 5 \ne 0\end{aligned}\)

This implies that\(\left( {\begin{aligned}{*{20}{c}}8&5\\{ - 7}&{ - 5}\end{aligned}} \right)\)is invertible.

02

Use the formula

\({\left( {\begin{aligned}{*{20}{c}}a&b\\c&d\end{aligned}} \right)^{ - 1}} = \frac{1}{{ad - bc}}\left( {\begin{aligned}{*{20}{c}}d&{ - b}\\{ - c}&a\end{aligned}} \right)\) when \(ad - bc \ne 0\).

03

Write the inverse matrix

\(\begin{aligned}{c}{\left( {\begin{aligned}{*{20}{c}}8&5\\{ - 7}&{ - 5}\end{aligned}} \right)^{ - 1}} = \frac{1}{{ - 5}}\left( {\begin{aligned}{*{20}{c}}{ - 5}&{ - 5}\\7&8\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}1&1\\{ - \frac{7}{5}}&{ - \frac{8}{5}}\end{aligned}} \right)\\{\left( {\begin{aligned}{*{20}{c}}8&5\\{ - 7}&{ - 5}\end{aligned}} \right)^{ - 1}} = \left( {\begin{aligned}{*{20}{c}}1&1\\{ - 1.4}&{ - 1.6}\end{aligned}} \right)\end{aligned}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free