Chapter 2: Q3SE (page 93)
Let \(A = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{1}}&{\bf{0}}\end{aligned}} \right)\). Show that \({A^{\bf{3}}} = {\bf{0}}\). Use matrix algebra to complete the product \(\left( {I - A} \right)\left( {I + A + {A^{\bf{2}}}} \right)\).
Short Answer
The equation \({A^3} = 0\) is proved. Using \({A^3} = 0\), the product \(\left( {I - A} \right)\left( {I + A + {A^2}} \right) = I\).