In the rest of this exercise set and in those to follow, you should assume that each matrix expression is defined. That is, the sizes of the matrices (and vectors) involved match appropriately.

Compute \(A - {\bf{5}}{I_{\bf{3}}}\) and \(\left( {{\bf{5}}{I_{\bf{3}}}} \right)A\)

\(A = \left( {\begin{aligned}{*{20}{c}}{\bf{9}}&{ - {\bf{1}}}&{\bf{3}}\\{ - {\bf{8}}}&{\bf{7}}&{ - {\bf{6}}}\\{ - {\bf{4}}}&{\bf{1}}&{\bf{8}}\end{aligned}} \right)\)

Short Answer

Expert verified

\(\left( {\begin{aligned}{*{20}{c}}4&{ - 1}&3\\{ - 8}&2&{ - 6}\\{ - 4}&1&3\end{aligned}} \right)\), \(\left( {\begin{aligned}{*{20}{c}}{45}&{ - 5}&{15}\\{ - 40}&{35}&{ - 30}\\{ - 20}&5&{40}\end{aligned}} \right)\)

Step by step solution

01

Find the matrix \(A - 5{I_{\bf{3}}}\)

The value of \(A - 5{I_3}\) can be calculated as follows:

\(\begin{aligned}{c}A - 5{I_3} = \left( {\begin{aligned}{*{20}{c}}9&{ - 1}&3\\{ - 8}&7&{ - 6}\\{ - 4}&1&8\end{aligned}} \right) - 5\left( {\begin{aligned}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{9 - 5}&{ - 1 - 0}&{3 - 0}\\{ - 8 - 0}&{7 - 5}&{ - 6 - 0}\\{ - 4 - 0}&{1 - 0}&{8 - 5}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}4&{ - 1}&3\\{ - 8}&2&{ - 6}\\{ - 4}&1&3\end{aligned}} \right)\end{aligned}\)

02

Find the matrix \(\left( {5{I_3}} \right)A\)

The value of \(\left( {5{I_3}} \right)A\) can be calculated as follows:

\(\begin{aligned}{c}\left( {5{I_3}} \right)A = 5\left( {{I_3}A} \right)\\ = 5\left( {\begin{aligned}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}9&{ - 1}&3\\{ - 8}&7&{ - 6}\\{ - 4}&1&8\end{aligned}} \right)\\ = 5\left( {\begin{aligned}{*{20}{c}}9&{ - 1}&3\\{ - 8}&7&{ - 6}\\{ - 4}&1&8\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{45}&{ - 5}&{15}\\{ - 40}&{35}&{ - 30}\\{ - 20}&5&{40}\end{aligned}} \right)\end{aligned}\)

So, \(A - 5{I_3} = \left( {\begin{aligned}{*{20}{c}}4&{ - 1}&3\\{ - 8}&2&{ - 6}\\{ - 4}&1&3\end{aligned}} \right)\), and \(\left( {5{I_3}} \right)A = \left( {\begin{aligned}{*{20}{c}}{45}&{ - 5}&{15}\\{ - 40}&{35}&{ - 30}\\{ - 20}&5&{40}\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Exercises 15 and 16 concern arbitrary matrices A, B, and Cfor which the indicated sums and products are defined. Mark each statement True or False. Justify each answer.

15. a. If A and B are \({\bf{2}} \times {\bf{2}}\) with columns \({{\bf{a}}_1},{{\bf{a}}_2}\) and \({{\bf{b}}_1},{{\bf{b}}_2}\) respectively, then \(AB = \left( {\begin{aligned}{*{20}{c}}{{{\bf{a}}_1}{{\bf{b}}_1}}&{{{\bf{a}}_2}{{\bf{b}}_2}}\end{aligned}} \right)\).

b. Each column of ABis a linear combination of the columns of Busing weights from the corresponding column of A.

c. \(AB + AC = A\left( {B + C} \right)\)

d. \({A^T} + {B^T} = {\left( {A + B} \right)^T}\)

e. The transpose of a product of matrices equals the product of their transposes in the same order.

Use the inverse found in Exercise 1 to solve the system

\(\begin{aligned}{l}{\bf{8}}{{\bf{x}}_{\bf{1}}} + {\bf{6}}{{\bf{x}}_{\bf{2}}} = {\bf{2}}\\{\bf{5}}{{\bf{x}}_{\bf{1}}} + {\bf{4}}{{\bf{x}}_{\bf{2}}} = - {\bf{1}}\end{aligned}\)

If A, B, and X are \(n \times n\) invertible matrices, does the equation \({C^{ - 1}}\left( {A + X} \right){B^{ - 1}} = {I_n}\) have a solution, X? If so, find it.

In exercise 5 and 6, compute the product \(AB\) in two ways: (a) by the definition, where \(A{b_{\bf{1}}}\) and \(A{b_{\bf{2}}}\) are computed separately, and (b) by the row-column rule for computing \(AB\).

\(A = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{1}}}&{\bf{2}}\\{\bf{5}}&{\bf{4}}\\{\bf{2}}&{ - {\bf{3}}}\end{aligned}} \right)\), \(B = \left( {\begin{aligned}{*{20}{c}}{\bf{3}}&{ - {\bf{2}}}\\{ - {\bf{2}}}&{\bf{1}}\end{aligned}} \right)\)

Suppose the third column of Bis the sum of the first two columns. What can you say about the third column of AB? Why?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free