In exercise 5 and 6, compute the product \(AB\) in two ways: (a) by the definition, where \(A{b_{\bf{1}}}\) and \(A{b_{\bf{2}}}\) are computed separately, and (b) by the row-column rule for computing \(AB\).

\(A = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{1}}}&{\bf{2}}\\{\bf{5}}&{\bf{4}}\\{\bf{2}}&{ - {\bf{3}}}\end{aligned}} \right)\), \(B = \left( {\begin{aligned}{*{20}{c}}{\bf{3}}&{ - {\bf{2}}}\\{ - {\bf{2}}}&{\bf{1}}\end{aligned}} \right)\)

Short Answer

Expert verified

\(\left( {\begin{aligned}{*{20}{c}}{ - 7}&4\\7&{ - 6}\\{12}&{ - 7}\end{aligned}} \right)\)

Step by step solution

01

Find the value of \(A{b_{\bf{1}}}\)

Multiply matrix \(A\) with the first column of matrix \(B\).

\(\begin{aligned}{c}A{b_1} = \left( {\begin{aligned}{*{20}{c}}{ - 1}&2\\5&4\\2&{ - 3}\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}3\\{ - 2}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{\left( { - 1} \right) \times 3 + 2 \times \left( { - 2} \right)}\\{5 \times 3 + 4 \times \left( { - 2} \right)}\\{2 \times 3 + \left( { - 3} \right) \times \left( { - 2} \right)}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{ - 7}\\7\\{12}\end{aligned}} \right)\end{aligned}\)

02

Find the value of \(A{b_{\bf{2}}}\)

Multiply matrix \(A\) with the second column of matrix \(B\).

\(\begin{aligned}{c}A{b_2} = \left( {\begin{aligned}{*{20}{c}}{ - 1}&2\\5&4\\2&{ - 3}\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}{ - 2}\\1\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{\left( { - 1} \right) \times \left( { - 2} \right) + 2 \times 1}\\{5 \times \left( { - 2} \right) + 4 \times 1}\\{2 \times \left( { - 2} \right) + \left( { - 3} \right) \times 1}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}4\\{ - 6}\\{ - 7}\end{aligned}} \right)\end{aligned}\)

03

Write the product \(AB\)

The product \(AB\) can be written as follows:

\(\begin{aligned}{c}AB = \left( {\begin{aligned}{*{20}{c}}{A{b_1}}&{A{b_2}}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{ - 7}&4\\7&{ - 6}\\{12}&{ - 7}\end{aligned}} \right)\end{aligned}\)

04

Find the product \(AB\) using row-column rule

\(\begin{aligned}{c}AB = \left( {\begin{aligned}{*{20}{c}}{ - 1}&2\\5&4\\2&{ - 3}\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}3&{ - 2}\\{ - 2}&1\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{ - 1 \times \left( 3 \right) + 2 \times \left( { - 2} \right)}&{ - 1 \times \left( { - 2} \right) + 2 \times 1}\\{5 \times 3 + 4 \times \left( { - 2} \right)}&{5 \times \left( { - 2} \right) + 4 \times 1}\\{2 \times 3 + \left( { - 3} \right) \times \left( { - 2} \right)}&{2 \times \left( { - 2} \right) + \left( { - 3} \right) \times 1}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{ - 7}&4\\7&{ - 6}\\{12}&{ - 7}\end{aligned}} \right)\end{aligned}\)

So, \(AB = \left( {\begin{aligned}{*{20}{c}}{ - 7}&4\\7&{ - 6}\\{12}&{ - 7}\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \({{\bf{r}}_1} \ldots ,{{\bf{r}}_p}\) be vectors in \({\mathbb{R}^{\bf{n}}}\), and let Qbe an\(m \times n\)matrix. Write the matrix\(\left( {\begin{aligned}{*{20}{c}}{Q{{\bf{r}}_1}}& \cdots &{Q{{\bf{r}}_p}}\end{aligned}} \right)\)as a productof two matrices (neither of which is an identity matrix).

In Exercises 1 and 2, compute each matrix sum or product if it is defined. If an expression is undefined, explain why. Let

\(A = \left( {\begin{aligned}{*{20}{c}}2&0&{ - 1}\\4&{ - 5}&2\end{aligned}} \right)\), \(B = \left( {\begin{aligned}{*{20}{c}}7&{ - 5}&1\\1&{ - 4}&{ - 3}\end{aligned}} \right)\), \(C = \left( {\begin{aligned}{*{20}{c}}1&2\\{ - 2}&1\end{aligned}} \right)\), \(D = \left( {\begin{aligned}{*{20}{c}}3&5\\{ - 1}&4\end{aligned}} \right)\) and \(E = \left( {\begin{aligned}{*{20}{c}}{ - 5}\\3\end{aligned}} \right)\)

\(A + 2B\), \(3C - E\), \(CB\), \(EB\).

Explain why the columns of an \(n \times n\) matrix Aspan \({\mathbb{R}^{\bf{n}}}\) when

Ais invertible. (Hint:Review Theorem 4 in Section 1.4.)

Suppose A, B,and Care invertible \(n \times n\) matrices. Show that ABCis also invertible by producing a matrix Dsuch that \(\left( {ABC} \right)D = I\) and \(D\left( {ABC} \right) = I\).

Use partitioned matrices to prove by induction that for \(n = 2,3,...\), the \(n \times n\) matrices \(A\) shown below is invertible and \(B\) is its inverse.

\[A = \left[ {\begin{array}{*{20}{c}}1&0&0& \cdots &0\\1&1&0&{}&0\\1&1&1&{}&0\\ \vdots &{}&{}& \ddots &{}\\1&1&1& \ldots &1\end{array}} \right]\]

\[B = \left[ {\begin{array}{*{20}{c}}1&0&0& \cdots &0\\{ - 1}&1&0&{}&0\\0&{ - 1}&1&{}&0\\ \vdots &{}& \ddots & \ddots &{}\\0&{}& \ldots &{ - 1}&1\end{array}} \right]\]

For the induction step, assume A and Bare \(\left( {k + 1} \right) \times \left( {k + 1} \right)\) matrices, and partition Aand B in a form similar to that displayed in Exercises 23.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free