Use the inverse found in Exercise 1 to solve the system

\(\begin{aligned}{l}{\bf{8}}{{\bf{x}}_{\bf{1}}} + {\bf{6}}{{\bf{x}}_{\bf{2}}} = {\bf{2}}\\{\bf{5}}{{\bf{x}}_{\bf{1}}} + {\bf{4}}{{\bf{x}}_{\bf{2}}} = - {\bf{1}}\end{aligned}\)

Short Answer

Expert verified

The solutions are \({x_1} = 7\) and \({x_2} = - 9\).

Step by step solution

01

Write the matrix form

The given system is equivalent to \(Ax = b\).

Here, \(A = \left( {\begin{aligned}{*{20}{c}}8&6\\5&4\end{aligned}} \right),{\rm{ }}x = \left( {\begin{aligned}{*{20}{c}}{{x_1}}\\{{x_2}}\end{aligned}} \right),\) and \(b = \left( {\begin{aligned}{*{20}{c}}2\\{ - 1}\end{aligned}} \right)\).

02

Write the inverse obtained in Exercise 1

From Exercise 1, \({\left( {\begin{aligned}{*{20}{c}}8&6\\5&4\end{aligned}} \right)^{ - 1}} = \left( {\begin{aligned}{*{20}{c}}2&{ - 3}\\{ - 2.5}&4\end{aligned}} \right)\).

03

Express the solution

\(\begin{aligned}{c}x = {A^{ - 1}}b\\ = \left( {\begin{aligned}{*{20}{c}}2&{ - 3}\\{ - 2.5}&4\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}2\\{ - 1}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{4 + 3}\\{ - 5 - 4}\end{aligned}} \right)\\x = \left( {\begin{aligned}{*{20}{c}}7\\{ - 9}\end{aligned}} \right)\end{aligned}\)

Thus, \({x_1} = 7\) and \({x_2} = - 9\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be an invertible linear transformation, and let Sand U be functions from \({\mathbb{R}^n}\) into \({\mathbb{R}^n}\) such that \(S\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) and \(\)\(U\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\). Show that \(U\left( v \right) = S\left( v \right)\) for all v in \({\mathbb{R}^n}\). This will show that Thas a unique inverse, as asserted in theorem 9. [Hint: Given any v in \({\mathbb{R}^n}\), we can write \({\mathop{\rm v}\nolimits} = T\left( {\mathop{\rm x}\nolimits} \right)\) for some x. Why? Compute \(S\left( {\mathop{\rm v}\nolimits} \right)\) and \(U\left( {\mathop{\rm v}\nolimits} \right)\)].

In exercises 11 and 12, mark each statement True or False. Justify each answer.

a. The definition of the matrix-vector product \(A{\bf{x}}\) is a special case of block multiplication.

b. If \({A_{\bf{1}}}\), \({A_{\bf{2}}}\), \({B_{\bf{1}}}\), and \({B_{\bf{2}}}\) are \(n \times n\) matrices, \[A = \left[ {\begin{array}{*{20}{c}}{{A_{\bf{1}}}}\\{{A_{\bf{2}}}}\end{array}} \right]\] and \(B = \left[ {\begin{array}{*{20}{c}}{{B_{\bf{1}}}}&{{B_{\bf{2}}}}\end{array}} \right]\), then the product \(BA\) is defined, but \(AB\) is not.

In Exercises 33 and 34, Tis a linear transformation from \({\mathbb{R}^2}\) into \({\mathbb{R}^2}\). Show that T is invertible and find a formula for \({T^{ - 1}}\).

34. \(T\left( {{x_1},{x_2}} \right) = \left( {6{x_1} - 8{x_2}, - 5{x_1} + 7{x_2}} \right)\)

Use matrix algebra to show that if A is invertible and D satisfies \(AD = I\) then \(D = {A^{ - {\bf{1}}}}\).

Let \(A = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}&{ - {\bf{3}}}\\{ - {\bf{4}}}&{\bf{6}}\end{aligned}} \right)\) and \(B = \left( {\begin{aligned}{*{20}{c}}{\bf{8}}&{\bf{4}}\\{\bf{5}}&{\bf{5}}\end{aligned}} \right)\) and \(C = \left( {\begin{aligned}{*{20}{c}}{\bf{5}}&{ - {\bf{2}}}\\{\bf{3}}&{\bf{1}}\end{aligned}} \right)\). Verfiy that \(AB = AC\) and yet \(B \ne C\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free